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1 Introduction

Suppose we are given the task or ordering a collection of sets from “smallest” to
“largest.” If all of the sets are finite, then (in principle) this task is trivial: we
order them based on how many elements are in each set, using the ordering of the
natural numbers. What if, however, the collection includes infinite sets? How
can we make sense of the words “smaller” or “larger” when we can’t actually
assign to each set a finite number that describes how many elements the set
contains? One way to do this uses the concept of cardinality, which generalizes
the notion of set “size” to sets with infinitely many elements. Understanding
this requires us to get a better picture of exactly what it means for a set to have
infinitely many elements; in fact, we will see that there are “different kinds” of
infinities.

2 Countable Sets

Consider a typical finite set, such as the set of lower-case letters in the English
alphabet:

S = {a, b, c, . . . , x, y, z}.

What does it mean to count the number of elements in the set? What we
really do when we count is to assign to each element of the set a unique natural
number, generally starting from 1 (or 0 if you’re a computer scientist!) and
proceeding upward:

a b c x y z
↕ ↕ ↕ · · · ↕ ↕ ↕
1 2 3 24 25 26

In this sense, any description of the elements of a set is immaterial; we only care
about how many elements there are. This process of identifying elements with
natural numbers (also called counting numbers) can be thought of in another
way. When we count we are creating a certain type of function from our set
to a subset of the natural numbers. First, some terminology. A function is
injective1 if two distinct inputs always have two distinct outputs. A function is

1A common synonym for injective is one-to-one, but this is rather misleading terminology.
“Two-to-two” might be more appropriate. An injective function is also called a injection.
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surjective2 if every element in the range is the output of one or more elements
in the domain. A function that is both injevtive and surjective is also called
bijective3. Another description of a bijective function is that every element in
the range is the output of exactly one element of the domain.

So, to count the elements of a set is to create a bijective function from the
set to a subset of the natural numbers, usually {1, 2, ..., n} for finite sets. In
functional notation, the above example is described as follows:

f : S −→ {1, 2, . . . , 26}
a 7−→ 1

b 7−→ 2

...

z 7−→ 26

It is a basic fact that each bijection f has an inverse function, written as f−1,
that undoes the action of f :

f−1 : {1, 2, . . . , 26} −→ S

1 7−→ a

2 7−→ b

...

26 7−→ z

When we preform one after the other, the result is that we have done nothing,
e.g.,

f(f−1(1)) = 1, f−1(f(a)) = a.

We say that two sets have the same cardinality if there is a bijection from
one set to the other. If the sets have finitely many elements, then cardinality
corresponds to the number of elements in the sets. We could formally define a
finite set to be one that is in bijection with a subset of the natural numbers of
the form

{1, 2, . . . , N} ⊂ N

for some number N . For example,

{red,white,blue} ←→ {1, 2, 3} ←→ {breakfast, lunch,dinner}

are finite sets with the same cardinality, namely 3.
We can generalize the definition of a finite set and say that a set is countable

if there exists a bijection from it to any any subset of the natural numbers. If
that subset of N is infinite, then the original set is countably infinite.

2A common synonym for surjective is onto. A surjective function is also called a surjection.
3A bijective function is also called a bijection. One set is in bijection with another if there

exists a bijective function between them.
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Notice that with this definition, all finite sets are countable, and any subset
of a countable set is still countable. The natural numbers are by definition
countably infinite. Also, we note that ignoring what the elements of the set
actually are, any countably infinite set essentially “looks like” a copy of N, in
the sense that we can enumerate the elements. E.g., if S is countably in finite,
then

S = {s1, s2, . . . , sn, . . . }.

If S and T are sets, recall that the union S ∪ T of the two sets is the set
containing exactly the elements of both S and T . When S and T are disjoint
and nonempty, the union S∪T is a set with strictly larger cardinality than that
of S of T . In other words, for finite sets, the union operation can be used to
create larger sets, e.g.,

{1, 2, 3} ∪ {4, 5} = {1, 2, 3, 4, 5}.

Interestingly, this is not the case with infinite sets.

Theorem 2.1. The union of countably many countable sets is a countable set.

Proof. Let the countably many sets be denoted

S1, S2, S3, . . . .

As a “worst case scenario,” we may as well assume that there is a countably
infinite number of sets, and that each set itself is countably infinite. Consider
the union

S =

∞⋃
i=1

Si = S1 ∪ S2 ∪ S3 ∪ · · ·

of these sets. To show that it is countable, we must put it into bijection with
N.

Suppose a set Si has elements

ai1, ai2, ai3, ai4, . . . .

Then we can arrange the elements of the union of the sets in a doubly-infinite
array:

a11 a12 a13 a14 . . .
a21 a22 a23 a24 . . .
a31 a32 a33 a34 . . .
a41 a42 a43 a44 . . .
...

...
...

...
. . .
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We create a bijection by counting each element as we follow the arrows:

a11 a12 a13 a14

a21 a22 a23

a31 a32

a41

...

In other words, we have a pairing

a11 a12 a21 a31 a22 a13 a14
↕ ↕ ↕ ↕ ↕ ↕ ↕ · · ·
1 2 3 4 5 6 7

of each element of S with a natural number, and so S is countably infinite.

There are several immediate corollaries regarding the cardinalities of some
familiar sets.

Corollary 2.2. The set Z of integers is countably infinite.

Proof. We exhibit Z as a countable union of three sets:

Z = {1, 2, 3, . . . } ∪ {0} ∪ {−1,−2,−3, . . . }.

The first set is the natural numbers. The second set is finite. The third set
is countably infinite since the function f : N → {−1,−2,−3, . . . } given by
f(x) = −x is a bijection. The theorem applies, so Z is countable.

Corollary 2.3. The set Q of rational numbers is countably infinite.

Proof. We exhibit Q as a countable union of countable sets. For each k ∈ N, let

Ak =

{
· · · ,−2

k
,−1

k
,
0

k
,
1

k
,
2

k
, . . .

}
.

Each of these sets is clearly in bijection with the integers, which is a countable
set. But

Q =
⋃
k∈N

Ak

so it is a countable union of countable sets, and the theorem applies.
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There are many ways to prove this last fact, and here is another. Let

Bk =

{
1

k
,
2

k
, . . .

}
for k ∈ Z, with B0 = {0}. Then

Q =
⋃
k∈Z

Bk.

Recall that the cartesian product of two sets is the set of ordered pairs of
elements from the two sets: S × T = {(s, t) | s ∈ S, t ∈ T}. This extends to
finitely many sets as well:

S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn}

When S and T are finite and nonempty, the cardinality of S × T is the product
of the cardinalities of S and T .

As with union, for finite sets, the cartesian product operation is a way to
obtain sets that are generally larger in size. For example:

S = {1, 2, 3}, T = {4, 5}

S × T = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}

but again this is no longer true for infinite sets.

Corollary 2.4. The cartesian product of finitely many countable sets is count-
able.

Proof. It is enough to consider the cartesian product

Nd = N× N× · · · × N︸ ︷︷ ︸
d times

= {(n1, . . . , nd) | n1, . . . , nd ∈ N}

since any countable set is in bijection with a subset of N. The proof is by
induction on d. The base case is d = 1, and is true by definition. Now suppose
that Nd−1 is countable. We can list its elements:

a1, a2, a3, . . .

To show that Nd is countable, we simply write

Nd = Nd−1 × N

and use the argument from the previous theorem. That is, we write this set as
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a doubly infinite array:

(a1, 1) (a1, 2) (a1, 3) (a1, 4)

(a2, 1) (a2, 2) (a2, 3)

(a3, 1) (a3, 2)

(a4, 1)

...

which shows Nd is countable.

Looking at these examples, we see another unintuitive phenomenon that is
specific to infinite sets. Namely, an infinite set, like the integers, can have a
bijection with a proper subset of itself, like the natural numbers. This actually
characterizes infinite sets.

Theorem 2.5. A set is infinite if and only if there exists a bijection between it
and a proper subset of itself.

Proof. On the one hand, a finite set clearly cannot be in bijection with a proper
subset of itself.

On the other hand, given an infinite set S, we need to find a proper subset
A ⊊ S and a bijection f : S → A. Since S is infinite, we can select a countably
infinite subset and isolate the first element (the “head”):

{x1, x2, x3, . . . } = {x1}︸︷︷︸
H

∪{x2, x3, . . . }︸ ︷︷ ︸
T

⊂ S

Note that this subset may or may not be all of S. If R = S\(H∪T ) is everything
not in the countably infinite subset (the “remainder”), then

S = H ∪ T ∪R

Now define a function f : S → T ∪R by

f(x) =

{
x if x ∈ R

xk+1 if x = xk ∈ H ∪ T

The first part of the definition is a bijection R→ R, and the second is a bijection
H ∪ T → T , so f is a bijection.
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Here is a famous brain teaser, whose solution uses the ideas of the theorem.
Suppose that a hotel (possibly in an alternate universe) has a countably infinite
number of rooms, and suppose they are labeled with the natural numbers:

Room 1,Room 2, . . . .

On some dark and stormy night, all the rooms in the hotel are filled.

(1) A couple comes to the hotel, looking for a room. How can the hotel,
despite being full, accommodate the couple (that is, give them a normal
hotel room) without kicking out any other hotel guests?

(2) A group of N people comes to the hotel, each looking for a room. How can
the hotel, despite being full, accommodate the new guests (that is, give
them a normal hotel room) without kicking out any other hotel guests?

(3) A countably infinite number of people come to the hotel, each looking for
a room. How can the hotel, despite being full, accommodate each new
guest (that is, give them a normal hotel room) without kicking out any
other hotel guests?

3 Uncountable Sets

At this point, one might wonder if in fact all sets are countable. We have shown
that several familiar infinite sets all have the same cardinality, but in fact, there
exist sets that are not countable. We call such sets uncountable.

Theorem 3.1. The set R of real numbers is uncountable.

Proof. It is enough to show that the interval (0, 1) ⊂ R is uncountable, since if
R contains an uncountable subset, it certainly cannot itself be countable. We
represent elements of (0, 1) by their infinite decimal expansions, e.g.,

0.229384720983473 . . .

We also agree not to use any numbers ending in an infinite string of nines, to
avoid ambiguity. Now, for a contradiction, suppose that this set is countable:
(0, 1) = {x1, x2, . . . }. We will construct an element that is in the set, but which
was not counted. Write out our countable list of numbers in terms of their
decimal expansions as follows:

x1 = 0 . a11 a12 a13 a14 . . .

x2 = 0 . a21 a22 a23 a24 . . .

x3 = 0 . a31 a32 a33 a34 . . .

x4 = 0 . a41 a42 a43 a44 . . .

...
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To construct the missing number, let

b = 0 . b1 b2 b3 b4 . . . ,

where each bk can be any digit except akk, i.e., the underlined diagonal digits
above. Thus, b is not in the list, since it differs from each number in the list in
at least one decimal place. The existence of a number in (0, 1) that is not one
of the xis is a contradiction, so the set (0, 1) must be uncountable.

The interval (0, 1) and the real line R are uncountable, but in fact these
two sets have the same cardinality. We can construct a bijection between them.
Define

f : (0, 1) −→ R

x 7−→ tan
(
πx− π

2

)
and

f−1 : R −→ (0, 1)

y 7−→ 1

π
tan−1(y) +

1

2

It is easy to check that these functions are inverses, and so they are bijections.
More generally, all intervals of the following form have the same cardinality
as R, and hence the same cardinality as each other: (a, b), [a, b), (a, b], [a, b],
(−∞, a), (−∞, a], (a,∞), [a,∞), assuming a < b.

Since Q is a countable subset of R, which is uncountable, we see that in-
finitely many real numbers are not rational. In fact, the rationals are a vanish-
ingly small subset of the reals. Even taking (finite) cartesian products yields
only countable sets, not even approaching uncountability. Uncountable there-
fore represents a “bigger” infinity than countable.

4 Other Cardinalities

Having discovered that the set of real numbers is uncountable, natural questions
are, “Do there exist sets with cardinality greater than that of the reals?” and,
“If so, how can we construct such a set?” As we have seen, techniques to create
larger sets that work for finite sets, such as taking unions and cartesian products,
do not work for countably infinite sets, so we shouldn’t expect them to work
for uncountable sets either. It turns out that the answer to the first question is
“yes”, but before discussing why, it is worth verifying that unions and cartesian
products do not yield larger sets in the case if the real numbers.

Consider [0, 1) and [1, 2). These have the same cardinality as R, as we have
seen. Their union is [0, 1)∪ [1, 2) = [0, 2), which again has the same cardinality
as R.

The case with cartesian products is a bit trickier, but it is true that (0, 1]×
(0, 1] has the same cardinality as (0, 1], and hence R. To see this, we ’ll construct
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a bijection f : (0, 1]×(0, 1]→ (0, 1]. First, note that every x ∈ (0, 1] has a unique
decimal expansion such that does not ending in an infinite sequence of zeros.
For example:

x = 0.2030070505 = 0.20300705049

Next, we define a certain construction for such numbers. Transform a number
into an infinite sequence of groups of digits by partitioning them after each
nonzero digit. For example:

x = 0.20300705059 = 0. 2︸︷︷︸
x1

| 03︸︷︷︸
x2

| 007︸︷︷︸
x3

| 05︸︷︷︸
x4

| 04︸︷︷︸
x5

| 9︸︷︷︸
x6

| · · ·

To define f , let (x, y) ∈ (0, 1]× (0, 1]. Perform the above construction for each
number, and create z ∈ (0, 1] by alternating between segments xi and yi:

(x, y) = (0.x1|x2|x3| · · · , 0.y1|y2|y3| · · · ) 7−→ (0.x1|y1|x2|y2| · · · ) = f(x, y)

This is a well-defined function since the expressions for x and y are unique. To
see that it is a bijection, we can use a simlar procedure to form what will be
the inverse. Given z ∈ (0, 1], define g : (0, 1]→ (0, 1]× (0, 1] by

z = 0.z1|z2|z3| · · · 7−→ (0.z1|z3|z5 · · · , 0.z2|z4|z6| · · · ) = g(z)

Again this is well-defined since z does not end in an infinite sequence of zeros.
It is clear that f ◦ g is the identity, so g = f−1 and hence f is a bijection.

While these examples may lead us to believe that we attain sets with larger
cardinality with simple operations, this is not the case. Given any set, there
is another method to construct a set with strictly larger cardinality. If S is a
set, the power set of S, denoted P(S), is the collection of all subsets of S. For
example, if

S = {a, b, c},
then

P(S) =
{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

}
.

(Recall that the empty set ∅ is a subset of every set, even itself.)
In the finite case, it is easy to see that P(S) has strictly more elements than

does S. In fact, if S has n elements, then P(S) has 2n elements. One quick
proof of this fact relies on simple combinatorial principles. To select a subset
T ⊂ S, for each element s ∈ S we decide if s ∈ T or not. Hence we have n
choices, each with 2 options, so 2n possible subsets.

It is a more interesting fact that the analogous statement is true for all
(including infinite) sets: S has “larger” cardinality than S (a term which we’ll
define below). This should not be obvious; after all, infinite sets can display
behavior that is completely different from finite sets. For example, we’ve seen
that an infinite set can be put in bijection with a proper subset of itself.

Two sets have the same cardinality if there is an injective and surjective
function from one to the other. Therefore, a necessary condition for two sets to
have the same cardinality is the existence of a surjective function from one set
to the other.
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Theorem 4.1. For any set S, there is no surjective function S → P(S).

Proof. The proof is by contradiction. Suppose f : S → P(S) is onto. This
means that for each A ∈ P(S) (which is a subset of S!), there is an element
a ∈ S such that f(a) = A. There are two possibilities:

(1) a ∈ A (2) a ̸∈ A.

Let’s define a new set to isolate elements satisfying the latter condition:

B = {a ∈ S | a ̸∈ f(a)} ⊂ S.

Since f is onto, there must be some b ∈ S such that f(b) = B. Now, the
question is “Is b an element of B?”

Suppose so. Then by definition of B, we must have

b ̸∈ f(b) = B,

which is the opposite of what we just assumed, hence impossible. On the other
hand, suppose not. Then again by the definition of B, we have

b ∈ f(b) = B,

which is also impossible. Since both possibilities lead to a contradiction, we
conclude that such a function f cannot exist.

The main idea of this proof has many non-mathematical representations.
Here is one:

Suppose that there is a barber in Seville who shaves only those men
who do not shave themselves.

Who shaves the barber?

Any attempt to answer this question lead to a contradiction, as in the proof.
The main implication of this theorem is that we can construct a sequence of

sets, each with “larger” cardinality than the one before:

S,P(S),P(P(S)),P(P(P(S))), . . . .

To make the word “larger” precise, say that the cardinality of a set S is larger
than the cardinality of a set T if there is a injective function T → S, but there
is no such surjective function. Thus, if we start with an infinite set S, then we
will have larger and larger infinite sets, that is, larger and larger cardinalities.
A natural question at this point is, “Does this sequence ever end?” Or, to put
it another way, is there a “largest” set, or a “set of everything” that ends the
sequence?

Let us call a set pleasant if A ̸∈ A. This seems like a strange property for a
set to have, but if there is a set of everything, then “the set of everything” is
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also a thing, so it must be a member of itself. Let R be the set of all pleasant
sets. As in the proof of the previous theorem, we have two possibilities:

(1) R ∈ R (2) R ̸∈ R.

If R ∈ R, then R is not pleasant, by the definition of pleasant. But since R
is the set of all pleasant sets, R ̸∈ R. On the other hand, if R ̸∈ R, then by
definition of R, R is not pleasant. By the definition of pleasant, R ∈ R. Either
way, we have a contradiction.

This is known as Russell’s Paradox. It implies that the answer to the above
question is “no,” there cannot be a set of everything, and this indicates that
care is needed when speaking of “the set of all” of anything.

Additionally, it means that the chain of increasingly large sets above does
not end, so in fact, there are infinitely many cardinalities. Or, put another way,
there are infinitely many infinities!
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