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1. Introduction

The notion of geometric collapse is rather intuitive. For example, consider the
surface obtained by revolving the graph of y = 1/x about the x-axis. Restricting to
x ≥ 1, this is known as Gabriel’s horn (or Torricelli’s trumpet). For “small” values
of x, this appears to be an ordinary surface (with boundary). However, if viewed
at the same scale, the manifold looks more like a line than a surface for “large”
values of x, so it is collapsed in some sense. See Figure 1.

In general, one might say that a portion of an n-manifold is collapsed if it looks
like a lower-dimensional object, relative to the rest of the manifold. To make this
idea precise, we clearly need some notion of distance. If we restrict our attention to
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x near 1

x >> 1

Figure 1. Gabriel’s horn.

smooth manifolds, then it is natural to consider collapse of Riemannian manifolds.
There are several approaches to understanding collapse of such objects.

Let (Mn, g) be a complete, connected, Riemannian manifold. Recall that the
injectivity radius at p ∈M is

inj(p) = inf {r > 0 | expp |Br(p) is not a diffeomorphism}.
Definition 1.1. If M admits a family {gε | ε > 0} of Riemannian metrics such that
injε(p) → 0 uniformly for all p ∈M , as ε→ 0, then (M, gε) collapses. If the sectional
curvatures of (M, gε) are all bounded, independent of ε, then (M, gε) collapses with
bounded curvature.

This definition of collapse can be “parametrized” as follows. We say (M, g) is ε-
collapsed if inj(p) < ε for all p ∈M . The idea is that, as in the informal description,
an ε-collapsed manifold of dimension n appears to have dimension less than n, when
viewed on a scale much greater than ε.

Another way to view collapse is to think of Riemannian manifolds as metric
spaces. One can then define a metric on the space of metric spaces, and say that
an n-manifold is ε-collapsed if it is ε-close to a manifold of lower dimension. This
approach involves the notion of Gromov-Hausdorff distance, which we will describe
later. Both ideas are easily seen in the example of Gabriel’s horn, which we will
explore in more detail below.

Our goal in this paper is to describe the approaches to collapse taken separately
by Fukaya, and Cheeger and Gromov, and also the combined approach taken by all
three. Roughly, the underlying principle is that collapsing metrics attain greater
symmetry and structure. For example, Fukaya showed that a collapsed manifold
must have a certain Riemannian fibration structure. Cheeger and Gromov showed
that a collapsed manifold admits a special algebraic structure generalizing a torus
action. In their joint work, these three authors extended this to show that a col-
lapsed manifold admits a nontrivial sheaf of nilpotent Lie algebras of Killing vector
fields acting in sufficiently collapsed directions. We will outline these results and
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provide some of the key ideas involved in their proofs. We will also give a few
examples to illustrate the results.

Here is the structure of this paper. The rest of this section contains two of
the motivating examples of collapse, an account of Gromov-Hausdorff distance and
convergence, and a review of sheaves. Next we focus specifically on the work of
Fukaya, then Cheeger and Gromov, then Cheeger, Fukaya, and Gromov. After this
there is a section on the theory of groupoids. Finally, we look at a topic where
collapse is relevant: behavior of manifolds whose metrics are solutions to the Ricci
flow. For this, we will describe a framework to understand such collapse using
Riemannian groupoids, and give a detailed example.

1.1. Examples of collapse. Here we consider two examples to illustrate the no-
tion of collapse with bounded curvature. Example 1 was the first known case of
collapse with bounded curvature, and was discovered by M. Berger. Example 2 is
a generalization of the Gabriel’s horn example described above.

Example 1 (Berger spheres). Recall that

SU(2) = {A ∈M2C | detA = 1, A∗ = A−1} =
{(

z w
−w z

) ∣∣∣∣ |z|2 + |w|2 = 1
}

is a Lie group diffeomorphic to S3. Recalling that S2 ∼= CP1, this fits into the Hopf
fibration,

S1 ↪−−→ S3 π−→ S2,

where π(z, w) = [z, w].
The Lie algebra of SU(2) is

su(2) =
{(

iα β + iγ
−β + iγ −iα

) ∣∣∣∣ α, β, γ ∈ R
}
.

This has a basis given by

X1 =
(−i 0

0 i

)
, X2 =

(
0 1
−1 0

)
, X1 =

(
0 i
i 0

)
,

and it is easy to see that

[X1, X2] = −2X3, [X2, X3] = −2X1, [X3, X1] = −2X2.

With respect to the dual coframe {ω1, ω2, ω3}, we define a family of left-invariant
metrics (equivalently, inner products on su(2))

gε = ε ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3

for 0 < ε ≤ 1. This means |X1|2 = ε, |X2| = |X3| = 1. The corresponding family
of Riemannian manifolds (S3, gε) is known as the Berger spheres. The metric gε

shrinks the fiber circles in the Hopf fibration above.
We want to compute the sectional curvatures with these metrics. In general, for

a left-invariant metric g on a Lie group G, the Levi-Civita covariant derivative ∇
is given by

∇XY =
1
2
(
adX Y − ad∗X Y − ad∗Y X

)
,

where adX Y = [X,Y ] is the adjoint representation of the Lie algebra g, and ad∗ is
its adjoint (*groan*) with respect to the inner product 〈·, ·〉 on g induced by g. Given
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a basis {Xi}, we can express ad in terms of structure constants: adXi Xj = ckijXk.
Similarly, ad∗Xi

Xj = ak
ijXk. The definition of ad∗ says that

〈ad∗X Y,Z〉 = 〈Y, adX Z〉,
which implies that ak

ij = cmil gjmg
kl, where gij = 〈Xi, Xj〉.

Now, in our case, we have c312 = c123 = c231 = −2, and we can solve for the ak
ij to

obtain

a3
12 = 2 a1

23 =
2
ε

a2
31 = 2ε

a3
21 = −2ε a1

32 = −2
ε

a2
13 = −2

Then using the formula for ∇, we compute that

∇X1X2 = (ε− 2)X3 ∇X2X3 = −X1 ∇X3X1 = −εX2

∇X2X1 = ε2X3 ∇X3X2 = X1 ∇X3X1 = (2− ε)X2

Next, using that R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, we see that

R(X1, X2)X2 = εX1, R(X2, X3)X3 = (4− 3ε)X2, R(X3, X1)X1 = εX3.

Recalling that the sectional curvature of X ∧ Y ⊂ Λ2g is given by

K(X ∧ Y ) =
〈R(X,Y )Y,Z〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2 ,

we compute that

K(X1 ∧X2) = ε, K(X2 ∧X3) = 4− 3ε, K(X3 ∧X1) = ε.

Note that these are all bounded above by 4. If we let ε→ 0, then

K(X1 ∧X2) → 0, K(X2 ∧X3) → 4, K(X3 ∧X1) → 0.

This is an example of collapse with bounded curvature, as the injectivity radii
uniformly decrease to zero.

Example 2 (Surfaces of revolution). Focusing on objects familiar from elementary
calculus, this example of collapse is much easier to visualize than the Berger spheres.
It generalizes Gabriel’s horn, mentioned above. Let γ : I → R2 be a curve in the
(x, z)-plane, where I ⊂ R is an open interval. Suppose that γ(t) = (r(t), z(t))
(thinking of radius and height), and that γ is parametrized by arclength. Let M be
the surface obtained by revolving the curve around the z-axis. Then M ∼= I × S1

and we have a cylindrical coordiate representation

(t, θ) 7−→ (r(t) cos θ, r(t) sin θ, z(t)),

where t ∈ I and θ ∈ [0, 2π).
There is the usual coordinate frame {∂t, ∂θ} and its coframe {dt, dθ}. One can

compute that the restriction of the Euclidean metric gcan on R3 to M is

g = ι∗gcan = dt2 + r2dθ2,

where ι : M → R3 is inclusion. From this, it is easy to see that the Riemann cur-
vature operator satisfies

R(∂θ, ∂t)∂t = −∂
2
t r

r
∂θ.
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Now we can calculate the sectional curvature:

K(∂t ∧ ∂θ) =
g(R(∂θ, ∂t)∂t, ∂θ)

g(∂t, ∂t)g(∂θ, ∂θ)− g(∂t, ∂θ)2
= −r

′′(t)
r(t)

.

Let δZ ⊂ R be the subset generated by δ > 0, thought of as translation. If
M̃ ∼= I×R is the universal cover of M , consider M̃/δZ. We are essentially shrinking
the radius according to γ(t) = (δr(t), z(t)), and the corresponding metric is

gδ = dt2 + δ2r2dθ2.

It is clear that the curvatures are the same as on M , but the injectivity radius is

injδ(t, θ) ≤ δπr(t) −→ 0,

as δ → 0. This means M̃/δZ collapses with bounded curvature.

1.2. Gromov-Hausdorff distance and convergence. We now describe the sec-
ond notion of collapse mentioned above, which requires several preliminary defini-
tions. See Petersen’s book [27] for a reference. Suppose (X, d) is a metric space,
and A,B ⊂ X. Recall the distance between subsets,

d(A,B) = inf {d(a, b) | a ∈ A, b ∈ B},
and an open ε-neighborhood of a set,

Bε(A) = {x ∈ X | d(x,A) < ε}.
Then the Hausdorff distance between A and B is

dH(A,B) = inf {ε | A ⊂ Bε(B), B ⊂ Bε(A)}.
The idea is that dH(A,B) is small if every point of A is near a point of B, and vice
versa. It is easy to see that this distance turns the collection of all compact subsets
of X into a metric space.

Definition 1.2. If (X, dX) and (Y, dY ) are metric spaces, then an admissible metric
on X t Y is a metric d that extends the given metrics. That is, d|X = dX and
d|Y = dY . Then the Gromov-Hausdorff distance is

dGH(X,Y ) = inf {dH(X,Y ) | d is an admissible metric on X t Y }.
In some sense, the idea is to try to define distances between points of X and Y

while respecting the triangle inequality.
Let M denote the space of compact metric spaces. The Gromov-Hausdorff metric

makes this into a pseudometric space1, which follows from the next proposition. The
proof of this proposition demonstrates some ideas that will appear later.

Proposition 1.3. If (X, dX), (Y, dY ) ∈ M and dGH(X,Y ) = 0, then they are
isometric.

Proof. Since the definition of Gromov-Hausdrorff distance is an infimum over ad-
missible metrics, there must be some sequence of such metrics, say di, with

(di)H(X,Y ) <
1
i
.

1Recall that this allows for the possibility that d(x, y) = 0 even when x 6= y.
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As such, each point of X should be within 1/i of a point of Y , and vice versa.
Therefore, we can find maps as follows:

Ii : X −→ Y such that di(x, Ii(x)) ≤ 1
i
,

Ji : Y −→ X such that di(y, Ji(y)) ≤ 1
i
.

These might not be continuous. Now, we can use the triangle inequality to see that

dY (Ii(x1), Ii(x2)) = di(Ii(x1), Ii(x2))

≤ di(Ii(x1), x1) + dX(x1, x2) + di(x2, Ii(x2))

≤ 2
i

+ dX(x1, x2),

and similarly,

dX(Ji(y1), Ji(y2)) ≤ 2
i

+ dY (y1, y2),

di(x, Ji ◦ Ii(x)) ≤ 2
i
,

di(y, Ii ◦ Ji(y)) ≤ 2
i
.

Using these last two inequalities and a diagonalization argument, one can construct
distance-decreasing limit maps

I : X −→ Y , J : Y −→ X,

which are inverses, and thus isometries. ¤

One can check that dGH on M is symmetric and satisfies the triangle inequality.
If we let M̃ denote the space of compact metric spaces, modulo isometry, then
(M̃, dGH) is a metric space.

Let (X, d) ∈ M, and consider a subset A ⊂ X such that dH(X,A) ≤ ε. Such a
subset A is called ε-dense. Finite ε-dense subsets always exist when X is compact.
Note that (A, d|A) is a metric space, and that dGH(X,A) ≤ ε.

This example also has ideas that will be seen later.

Example 3. Consider (X, dX), (Y, dY ) ∈ M and two ε-dense subsets

A = {x1, . . . , xk} ⊂ X, B = {y1, . . . , yk} ⊂ Y

such that for all 1 ≤ i, j ≤ k,

|dX(xi, xj)− dY (yi, yj)| ≤ ε.

We claim that dGH(X,Y ) ≤ 3ε.
Using the above observations about ε-dense subsets, and the triangle inequality,

it is enough to show that dGH(A,B) ≤ ε. For this, we need to define an admissible
metric on A tB. Set

d(xi, yj) = min
k
{dX(xi, xk) + dY (yi, yk) + ε},

and d|A = dX |A, d|B = dY |B , so that, for example d(xi, yi) = ε. This extends the
metrics on A and B in a way that no distinct points have distance zero, and it is
symmetric. One can check that the triangle inequality holds, and it is obviously
positive definite. Thus, d is the desired admissible metric.
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Example 4. Considering the Berger spheres from Example 1, it is easy to see that

lim
ε→0

(S3, gε) = (S2, g1/2),

where g1/2 is the natural metric on S2 giving it radius 1/2.

Example 5. Considering the surface of revolution from Example 2, it is easy to
see that if z is nice (e.g., monotone), then

lim
ε→0

(M̃/{δZ}, gδ) = (I, g),

where I is the interval of definition of the curve, and g is an appropriate metric.

The above definitions considered compact spaces, but we would like to extend
these notions to non-compact spaces. For this, we must consider pointed spaces,
so let M∗ denote the set of proper, pointed metric spaces. The pointed Gromov-
Hausdorff distance between (X, dX , x), (Y, dY , y) ∈ M∗ is

dGH

(
(X, dX , x), (Y, dY , y)

)
= inf

d
{dH(X,Y ) + d(x, y)},

where the infimum is over all admissible metrics on X t Y .
We now topologize M∗ by introducing pointed Gromov-Hausdorff convergence.

We say that
(Xi, di, xi) −→ (X, d, x)

if for all R > 0, (
BR(xi), di, xi

) −→ (
BR(x), d, x

)

with respect to the pointed Gromov-Hausdorff metric.

1.3. Review of sheaves. In anticipation of Subsections 2.2 and 2.3, we review a
few basics about sheaves.

A sheaf is an algebraic construction that provides a way to systematically encode
local data on mathematical objects of global interest. For example, a manifold has
globally defined functions. One can also work with functions locally, since they
behave well with respect to inclusion of open sets. One can think of inclusion of
open sets as inducing a map on functions, which is just restriction.

Let C be a category with a zero object2. For example, take the category of
abelian groups and group homomorphisms, or the category of Lie algebras and Lie
algebra homomorphisms.

Definition 1.4. A C-valued presheaf F on a topological space X consists of
• an object F(U) of C, for each open U ⊂ X;
• a morphism ρUV : F(U) −→ F(V ), for each inclusion V ⊆ U of open subsets

of X;
such that

• F(∅) is the zero object in C;
• ρUU : F(U) −→ F(U) is the identity morphism idF(U);
• if W ⊆ V ⊆ U are open, then ρUW = ρV W ◦ ρUV .

2A zero object is one that is both initial and terminal. That is, there exists a unique morphism
from it into any other object, and into it from any other object.
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If O(X) is the category whose objects are the open sets of X, and whose mor-
phisms are inclusions of open sets, then a presheaf is a contravariant functor

F : O(X) −→ C.

Write U ∈ O(X) to indicate that U ⊂ X is open.
The image F(U) of U ∈ O(X) is called the sections of F over U . The maps ρUV

are called retriction maps. It is common to write s|V for ρUV (s), where s ∈ F(U).
If we strengthen the above definition a bit, we obtain a sheaf.

Definition 1.5. A sheaf F on X is a sheaf if it satisfies the following conditions
for each U ∈ O(X), assumed to be covered by {Vi}.

• If s ∈ F(U) satisfies s|Vi
≡ 0 for all i, then s ≡ 0.

• If si ∈ F(Vi) for all i such that si|Vi∩Vj
= sj |Vi∩Vj

for all i and j, then there
exists a unique s ∈ F(U) such that s|Vi = si for all i.

Example 6. Sheaves appear in many contexts. For example, let M be a smooth
manifold.

• The smooth functions on M , with the usual notion of restriction, form a
sheaf of rings OM on M .

• The smooth, non-vanishing functions on M , with the usual notion of re-
striction, form a sheaf of groups O×M on M (under pointwise multiplication).

• The differential forms on M , with the usual notion of restriction, form a
sheaf of rings Ω•M on M .

• These examples are all related. Namely, if E →M is a fiber bundle, the
sections C∞(M ;E) of the bundle form a sheaf. The type of bundle will
determine in what category the sheaf has values.

• If M is complex, there are similar notions involving holomorphic func-
tions/sections.

Definition 1.6. If F is a presheaf on X and x ∈ X, then the stalk of F at x is

Fx =
⊔

U∈O(X)
x∈U

F0(U)
/
∼,

where s ∈ F(U) ∼ s′ ∈ F(U ′) if and only if there exists an open neighborhood W
of x such that W ⊂ U ∩ U ′ and s|W = s′|W . Equivalently, we could define this as
a direct limit

Fx = lim−→
U∈O(X)

x∈U

F(U) ∼=
⊕

U∈O(X)
x∈U

F(U)
/
N,

where N is generated by elements s− ρUV (s), for s ∈ F(U) and V ⊆ U .

So, the elements of the stalk Fx are germs of sections of F at x. Write [s,F(U)] ∈
Fx or 〈s, U〉 ∈ Fx to represent such a germ.

Definition 1.7. Let F and G be C-valued presheaves on X. A morphism ϕ : F → G

consists of a morphism of objects of C

ϕ(U) : F(U) −→ G(U)
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for each U ∈ O(X), such that whenever V ⊂ U , the diagram commutes:

F(V ) G(V )

F(U) G(U)

.......................................................................................................................................................................... ............
ϕ(V )

..............................................................................................................
...
.........
...

ρUV

..............................................................................................................
...
.........
...

ρ′UV

.......................................................................................................................................................................... ............
ϕ(U)

Another way to express this is that ϕ(s|V ) = ϕ(s)|V .

One can check that a morphism ϕ : F → G of presheaves induces a morphism on
stalks:

ϕx : Fx −→ Gx

[s,F(U)] 7−→ [ϕ(s),G(U)]

Finally, certain maps of spaces can induce sheaves in natural ways. We consider
one case.

Definition 1.8. If f : X → Y is a local homeomorphism and G is a sheaf on Y .
The pullback sheaf (or inverse image sheaf ) f−1G on X has sections

f−1G(U) = G(f(U)).

This is well-defined, since a local homeomorphism is an open map, i.e., the set
f(U) is open for each open set U ⊂ X.

2. The main theorems on collapse

2.1. The results of Fukaya. One perspective on bounded curvature collapse was
taken by Fukaya in [12] (and subsequently in [13] and [14]). The basic idea is that
if a Riemannian manifold Mn “looks like” a manifold of lower dimension, then it
necessarily admits a certain fibration structure. Here we give a summary of the
results, list a few examples, and sketch some of the key ideas in the proofs.

Let M (n) denote the collection of Riemannian manifolds of dimension less than
or equal to n, whose sectional curvatures satisfy |K| ≤ 1. Let M (n, µ) ⊂ M (n) be
those elements whose injectivity radii are everywhere greater than µ.

A manifold F is an infranilmanifold if a finite covering space of F is diffeomorphic
to a quotient of a nilpotent Lie group by a lattice.

Theorem 2.1. Suppose M ∈ M (n) and N ∈ M (n, µ). There exist some ε(n, µ) >
0 such that if dGH(M,N) < ε(n, µ), then M is a fiber bundle over N with fibers
diffeomorphic to an infranilmanifold.

Here are two examples.

Example 7. For a rather simple example, consider the following family of tori
with flat metrics:

T2
i = R2

/
Z⊕ (1/i)Z,

where i = 1, 2, . . . . Then, in the Gromov-Hausdorff sense

lim
i→∞

T2
i = R/Z ∼= S1,

and there is always a bundle
T2

i −→ S1
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with abelian fiber.

Example 8. The Berger spheres {(S3, gε)} from Example 1 satisfy

lim
ε→∞

(S3, gε) = (S2, g1/2),

and the resulting fiber bundle structure is the Hopf fibration

S1 ↪−−→ S3 π−→ S2,

which again has abelian fiber.
This is actually a specific case of a more general phenomenon. Namely, let (M, g)

have a free, isometric S1-action. Define a new metric gε by setting

gε(X,X) =

{
εg(X,X) if X is tangent to an S1 orbit
g(X,X) if X is perpendicular to an S1 orbit

.

As above, this has the effect of shrinking the S1 orbits, and

lim
ε→0

(M, gε) = (M/S1, g′),

where g′ is the induced metric. The bundle structure is

S1 ↪−−→M
π−→M/S1.

When M = S3, this does reduce to the Hopf fibration, since S3/S1 ∼= CP1 ∼= S2.

The proof of Theorem 2.1 has three main steps. First, one must construct the
bundle projection map f : M → N . Then one shows that it is indeed a bundle, and
finally, that the fibers are diffeomorphic to an infranilmanifold.

Let us discuss the construction of the projection map f . The idea is to build
it out of several constructions depending strongly on the fact that M and N are
close. Namely, it will be a composition of maps as follows:

M N

Bc(fN (N)) ⊂ RZ NfN (N) fN (N) ⊂ RZ


f

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

fM

................................................................................................................................................................ ............
exp−1

............................................................................................................ ............
π

..............................................................................................................
...
.........
...

f−1
N

For brevity, write ε = ε(n, µ). Following Subsection 1.2, if dGH(M,N) < ε, then
there is an admissible metric d on M tN that restricts to the given metrics on M
and N , and for each x ∈ N, y ∈M , there exists x′ ∈M,y′ ∈ N such that

d(x, x′) < ε, d(y, y′) < ε.

Then there are ε-dense sets ZN ⊂ N , ZM ⊂ M , both in bijection with a set Z by
some maps jM : Z → ZM and jN : Z → ZN . We can arrange these sets and maps
such that

M ⊂ B3ε(ZM ), N ⊂ B3ε(ZN ),

for z, z′ ∈ Z,
d(jM (z), jM (z′)) > ε, d(jN (z), jN (z′)) > ε,

and for all z ∈ Z,
d(jN (z), jM (z)) < ε.
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Roughly, this says that Z (by way of ZM and ZN ) is 3ε-dense in M and N , that
points of ZM and ZN are sufficiently “spread out”, and that ZM and ZN are close
in M tN .

Now, we want to construct a C1 embedding fN : N ↪→ RZ into the set of maps
Z → R, or R-valued sequences indexed by the set Z. This will require an auxillary
smooth function h : R→ [0, 1] such that h(0) = 1, h(t) = 0 for large enough t, and
with various bounds on its first derivative. Once such a function h is constructed,
set

fN (x) =
(
h
(
d(x, jN (z))

))
z∈Z

.

Essentially, we compare points x ∈ M with images of jN in N , then use h to give
a number close to 1 if they are close, and a 0 if they are not.

It was proved in an earlier paper of Katsuda [20] that such a map fN is indeed
a C1 embedding, and that for proper choice of c > 0,

exp |Bc(NfN (N))

is a diffeomorphism, where π : NfN (N) → fN (N) is the normal bundle of the image
fN (N) ⊂ RZ . This takes care of the top row and right side of the diagram.

The map on the left side of the diagram, fM , is defined as follows. We want a
map from M into the c-neighborhood of fN (N) ⊂ RZ , for some c > 0. As in the
definition of fN , we could define it as x 7→ (h(d(x, jN (z))))z∈Z , but it turns out
this is not smooth enough. We modify it with a type of averaging argument. Let
Bz = Bε(jM (z)) ⊂M . For x ∈M and z ∈ Z, set

dz(x) =
1

Vol(Bz)

∫

Bz

d(x, y) dy,

and then set

fM (x) =
(
h
(
dz(x)

))
z∈Z

.

The function h is now seeing the average distance from jM (z) to the points near x.
Let us check that the image of this map is in a small neighborhood of fN (N).

Let x ∈M . From the defintion of dz, we have

|d(jM (z), x)− dz(x)| =
∣∣∣∣d(jM (z), x)− 1

Vol(Bz)

∫

Bz

d(x, y) dy
∣∣∣∣

≤ 1
Vol(Bz)

∫

Bz

|d(jM (z), x)− d(x, y)| dy

< ε
1

Vol(Bz)

∫

Bz

dy

= ε.

As above, we may choose x′ ∈ N such that d(x, x′) < ε, and by the arguments
above, we have

|d(jM (z), x)− d(jN (z), x′)| ≤ |d(jM (z), x)− d(jM (z), jN (z))|
+ |d(jM (z), jN (z))− d(jN (z), x′)|

≤ 2ε.
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Combining this with the first inequality gives

|d(jN (z), x′)− dz(x)| ≤ |d(jN (z), x′)− d(jM (z), x)|
+ |d(jM (z), x)− dz(x)|

≤ 3ε.

It turns out this is sufficient, so this completes the construction of the (supposed)
bundle projection f : M → N as the composition

f = f−1
N ◦ π ◦ exp−1 ◦fM .

The next step in the proof is to show that f : M → N is a fiber bundle. To show
this, it is enough to show that fM is transverse to fibers of the normal bundle. This
follows from a technical lemma, whose proof we omit:

Lemma 2.2. For all p ∈M and ξ′ ∈ Tf(p)N , there exists ξ ∈ TpM such that

|dfM (ξ)− dfN (ξ′)|
|dfN (ξ′)| < c(ε),

for some constant c(ε).

The final step is to show that the fibers are diffeomorphic to an infranilmanifold.
This step follows the proof of a theorem of Gromov, which uses the notion of local
fundamental pseudogroups.

Theorem 2.3. Let M be a compact manifold with diam(M)max |K| < ε, with
fundamental group π. Then

• there exists a maximal nilpotent divisor N ⊂ π;
• the finite covering of M corresponding to N is diffeomorphic to a nilmani-

fold.

In [14], Fukaya considered, among other things, the structure of the fibration
on M . In [13], he considered several questions raised by Gromov. The set of
isometry classes of Riemannian manifolds with bounded curvatures and diameters
is precompact, with respect to the Gromov-Hausdorff distance on metric spaces.
What is the closure of this set, and how does a covergent sequence in the set relate,
topologically, to its limit? In the course of addressing these questions, Fukaya
proves a G-equivariant version of Theorem 2.1. That is, a locally compact group G
acts on M and N , and the fibration map f of the theorem is a G-map.

The methods used in [13] involve certain constructions on the frame bundle FM
of a manifold M . One implication that will be important later is that if (M, g) has
bounded curvature, and bounded covariant derivatives of the curvature tensor, and
if U ⊂M is sufficiently colllapsed, then there is a manifold N and a fibration as in
Theorem 2.1. Namely, the frame bundle FU and Y are close, and there is a fiber
bundle structure

(1) Z ↪−−→ FU −→ N,

where Z is now a nilmanifold (not just infranil), and the fibration is O(n)-equivar-
iant3. Then U is partitioned into infranilmanifolds, not all of the same dimension.

3Recall that O(n) acts naturally on the frame bundle.
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2.2. The results of Cheeger and Gromov. In [5] and [6], Cheeger and Gromov
also investigate the relation between collapse and certain related structures on a
Riemannian manifold. This time, however, the structure involved is an F -structure,
which is a sort of generalized torus action. In the first paper, they consider what
happens in the presense of an F -structure. It turns out that this implies the exis-
tence of a collapsing sequence of metrics. In the second paper, they consider the
converse. Any manifold admits an F -structure on the (possibly empty) part of
it that is sufficiently collapsed. We will first describe F -structures and give some
examples. Then we will more precisely describe the results, and explain a few ideas
in the proofs.

As mentioned above, defining an F -structure involves generalizing the notion of
a group action. Let M be a smooth manifold, let G be a connected Lie group,
and let g be its Lie algebra4. A local (or infinitesimal) action of G on M is a
homomorphism

g −→ T(M),

where T(M) is the space of vector fields on M . There is an obvious notion of
invariance of a subset under a local action. Then M is partitioned into orbits,
which are minimal invariant sets. Write Ox for the orbit of x ∈ M . Also, there
are the obvious notions of restriction of a local action, and pullback under a local
diffeomorphism.

Let G be a sheaf of connected Lie groups on M . Let G be the sheaf of asso-
ciated Lie algebras. An action of G on M is a sheaf morphism h : G → T(M). A
Riemannian metric g on M is invariant for G if h(G) ⊂ T(M) is a sheaf of local
Killing vector fields5 for g.

If π : M ′ →M is a local homeomorphism (e.g., a covering space), there is an
induced action π−1(h) of the pullback sheaf π−1(g):

T(M ′) T(M)

π−1(g) g

................................................................................................................................................................ ............
π∗

..............................................................................................................
...
.........
...

π−1(h)

..............................................................................................................
...
.........
...

h

.......................................................................................................................................................................... ............
π−1

There is again a notion of a set being invariant under the action, and there is a
partition of M into orbits. A set is saturated if it is a union of orbits, and the rank
of an action at x is the dimension of the orbit containing x. The rank is positive if
dim Ox > 0 for all x.

An action of G is complete if for all x ∈M , there is an open neighborhood V (x)
of x and a local homeomorphism Ṽ (x) → V (x) such that

• If π(x̃) = x, then for any neighborhood W ⊂ Ṽ (x) of x̃, the structure
homomorphism π−1(G)(W ) → Gx̃ = Gx is an isomorphism.

• The local action of π−1(G) comes from a global action of π−1(G)( ˜V (x)) =
Gx̃.

4This context can be generalized, but we will not bother.
5Recall that a Killing vector field X on (M, g) has isometric local flow. In other words,

LXg = 0.
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Definition 2.4. An F -structure onM is a complete action of a sheaf G of connected
Lie groups on M , such that the neighborhoods V (x) can be choosen to satisfy the
following:

• The covering π : Ṽ (x) → V (x) is finite and normal.
• The open set V (x) is saturated for each x.
• If x, y ∈ O, then V (x) = V (y).
• Each stalk Gx is isomorphic to a torus.

Example 9. Here is a simple example of an F -structure. Consider R4 = C2 with
coordinates (z, w), and let the 2-torus T2 have coordinates (θ, ρ). There is an action
of T2 on C2, given by

(θ, ρ) · (z, w) 7−→ (eiθz, eiρw).

This has orbits of dimensions 0, 1, and 2. For example

O(0,0) = {(0, 0)},
O(1,0) = {(eiθ, 0)} ∼= S1,

O(1,1) = {(eiθ, eiρ)} ∼= T2.

This F -structure does not have positive rank.

Here is the main theorem from [5].

Theorem 2.5. If M admits an F -structure of positive rank, then it admits a family
{gδ} of Riemannian metrics such that |Kδ| ≤ 1 for all δ, and (M, gδ) collapses.

Remark. We note that there are topological obstructions to the existence of F -
structures of positive rank. For example, ifM is compact and admits an F -structure
of positive rank, then we must have χ(M) = 0.

A converse to this theorem is the main result of [6].

Theorem 2.6. There exist constants c1(n), c2(n) > 0 such that if Mn is a complete
Riemannian manifold, then

M = MG ∪MF ,

where
• MF is an open set admitting an F -structure of positive rank, whose orbits

have diameter satisfying

diam(Oy) ≤ c1(n) inj(y),

• for all y ∈MG, there exists w ∈ Binj(u)/c2(n)(y) with

max
τ∈Λ2(TwM)

|K(w)|1/2 inj(y) ≥ c2(n).

Furthermore, by a result of Cheeger and Gromoll [4], one can actually replace the
given metric by one that is “close” to it, and that is invariant for the F -structure.

Suppose that M has bounded sectional curvature. A theorem of Grove and
Karcher [16] says that all geometric quantities (e.g., length, curvature) can be
estimated in terms of the size of the piece MG. Then Theorem 2.6 says that
M decomposes into two pieces whose geometry is controlled. Also, if we combine
Theorems 2.5 and 2.6 in the bounded curvature setting, then we have the following.
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Corollary 2.7. Suppose that (M, g) is compact with bounded sectional curvature,
and inj(x) ≤ c2(n) for all x ∈M . Then M admits a family of metrics that collapses
with bounded curvature.

Let us consider the proof of Theorem 2.6. Roughly, the idea is to find a covering
of the sufficiently collapsed part of M , where the open sets are homeomorphic (and
almost isometric) to certain flat manifolds6. One imports basic types of F -structures
to M using the cover, and pieces them together to form an honest F -structure. This
last step is possible due to a lemma, which we will describe below.

We first need to define and describe the types of F -structures that will be put
together to make the final F -structure. In what follows F will generally refer to
an F -structure, F to a sheaf, and µ to a local action of a sheaf.

Definition 2.8. An F -structure is called elementary if V (x) is independent of x,
that is, V (x) = M . It is called weak if not all V (x) are unions of orbits, that is,
not all V (x) are saturated.

One can describe an elementary F -structure in somewhat different terms. Con-
sider

• a finite normal covering X̃ → X, with covering group Γ;
• a representation ρ : Γ → Aut(Tk), where Tk is a torus;
• an action of the semi-direct product Γ ×ρ Tk, extending that of some γ ⊂

Γ×ρ Tk.
It turns out that this data determines an elementary F -structure F on M , for
which the sheaf F is an associated flat bundle on M with fiber Tk and holonomy
representation ρ.

Here is one way an elementary F -structure can determine a weak F -structure.
Let {Vα} be a locally finite collection of open sets in M , and for each α, let Fα =
(Fα, µα) be an elementary F -structure on Vα. Assume that

(F1) For all α, β, either Fα|Vα∩Vβ
is a sub-bundle of Fβ |Vα∩Vβ

, or vice-versa, or
they are equal.

(F2) In the former case, µα is obtained by restricting µβ , and Vα∩Vβ is saturated
for µα.

Then {Vα,Fα}, such that (F1) and (F2) hold determines a weak F -structure F
on ∪αVα, whose associated sheaf is F = ∪αFα.

If {Vα} is an open cover, assume that there are at mostN1 sets whose intersection
with any fixed Vα0 is nonempty. For each α, let Fα = (Fα, µα) be an elementary
F -structure on Vα such that (F1) holds. Assume that the orders of all coverings
Ṽα → Vα are less than or equal to N2, and that the fibers have dimension less
than or equal to N3. Finally assume that each Vα has a µα-invariant metric with
injα ≥ 1/2, |Kα| ≤ 1, and all metrics are quasi-isometric on intersections.

Lemma 2.9. For each 0 < 2ε < ρ < 1, there exists δ > 0, depending on ε,ρ,
N1, N2, N3 such that if for all α, β where Fα|Vα∩Vβ

and Fα,β |Vα∩Vβ
agree (where

Fα,β ⊂ Fβ), and (Fα, µα) and (Fα,β , µβ) are δ-close, then there are embeddings
φα : V ρ

α → Vα with ρ′ ≤ ρ, such that

• for each α, φα is ε-close to the inclusion V ρ′
α ↪→ Vα

6The “F” in F -structure stands for “flat.”
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• The collection {(φα(V ρ′
α ),Fα, φαµαφ

−1
α )} satisfies (F1) and (F2), and so

determines a weak F -structure over ∪αφα(V ρ′
α .

We won’t be precise about what “close’ means here. The idea of the proof of
this lemma is as follows. Consider all collections of sets such that Vα0 ∩ · · · ∩ Vαi

is maximal with respect to the property of having nonempty intersection. Choose
an ordering of the set of multi-indices α = (α0, . . . , αi), and reorder the indices of
each one to reflect the containment of the sheaves Fαj

. For each multi-index α, all
the pairs of indices (αj , αk) are then ordered.

Now, iterate through all the index pairs and apply another lemma, with shrinking
ρ and ε, to produce the desired collection (i.e., for which the properties hold). Then
use induction to check that this all works out.

Now we sketch the proof of Theorem 2.6. If M is complete and Riemannian, set

Mδ =

{
y ∈M

∣∣∣∣∣ sup
Binj(y)/δ(w)

|K(w)|1/2 inj(y) < δ

}
,

for some sufficiently small δ > 0. To each y ∈ Mδ, assign a set of short geodesic
loops [γj ]y, with orientation-preserving holonomy and rotational angles less than
π/λ(n), for some constant λ(n) > 0. These sets of loops will satisfy a property
similar to (F1). That is, if y1 and y2 are close, then [γj ]y1 either contains or is
contained in [γj ]y2 .

Next, one finds quasi-isometries fy : Uy → Tuy (Sy) where Uy is an open neigh-
borhood of y, Sy is a soul of a complete flat manifold, and Tuy (Sy) is a tubular
neighborhood with uy ≥ 0. Then one can show that the loops in the image cor-
responding to [γj ]y determine an elementary F -structure F y over a neighborhood
V y of fy(y). Pull this back to get (Vy = f−1(V y),Fy = f−1F y). One can show
that this collection satisfies (F1).

On an intersection Vy1 ∩ Vy2 , how far the maps fy1 and fy2 are from being
isometries will determine the closeness the local actions Fy1 and Fy2 . We want
these deviations from isometries to be controlled by the size of the Vyα and their
intersection multiplicities (N1 as above). This is achieved by picking a proper
subcover {Vyα} and using a lemma.

One now finds that the {(Vyα ,Fyα)} satisfies the hypotheses of Lemma 2.9, so
we obtain a weak F -structure, which is actually seen to be an honest F -structure.

2.3. The results of Cheeger, Fukaya, and Gromov. The paper [3] combines
the approaches described in sections 2.1 and 2.2. The main idea is that, given a
Riemannian manifold (M, g), there exists a nontrivial sheaf of nilpotent Lie algebras
on M , acting as Killing vector fields in the sufficiently collapsed directions, and that
there is a metric, close to g, for which the action of the sheaf is isometric. This
sheaf is similar to an F -structure, but a bit more general.

Let (M, g) be a Riemannian manifold, with V ⊂M open and π : Ṽ → V a normal
covering whose covering group is Λ. Suppose that H is a Lie group with finitely
many components such that

• Λ ⊂ H,
• H acts isometrically on Ṽ , extending the Λ-action,
• H is generated by its identity component N and Λ,
• N is nilpotent.
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Definition 2.10. We say that (M, g) is (ρ, k)-round at p ∈M if there exist V, Ṽ ,H
as above, such that

• Bρ(p) ⊂ V ,
• inj(p̃) > ρ for all p̃ ∈ Ṽ ,
• #(H/N) = #(Λ/Λ ∩N) ≤ k.

A metric is (ρ, k)-round if this holds at each p ∈M .

Definition 2.11. Let h be an action of a sheaf N of nilpotent Lie groups, and g a
(ρ, k)-round metric. Then (h,N) is a nilpotent Killing structure for g if for all p, we
can choose H,V, Ṽ in the following manner. There is a N-invariant neighborhood
U and a normal covering Ũ ⊂ Ṽ such that

• π−1(h) is the infinitesimal generator of a unique π−1(N)(Ũ)-action with
discrete kernel K, N0 = π−1(N)(Ũ)/L, and the N0|Ũ -action is the quotient
action.

• For all Y ⊂ Ũ with W ∩ π−1(p) 6= ∅, the structure homomorphism
π−1(N)(Ũ) → π−1(n)(W ) is an isomorphism.

• U and Ũ can be chosen independent of p, for all p ∈ Op.

We usually just call this a nil-structure. Note that by replacing N(U) with its
center, we obtain an F -structure. Here is the main theorem.

Theorem 2.12. Let (Mn, g) be a complete Riemannian manifold with |K| ≤ 1.
For all ε > 0 and n ∈ Z+, there exists ρ > 0, k ∈ Z+, and a (ρ, k)-round metric gε

such that
• e−εg < gε < eεg,
• |∇g −∇gε | < ε,
• |(∇gε)iRgε | < c(n, i, ε).

The metric gε can be chosen such that there is a nil-structure N for gε, whose orbits
are all compact with diamter less than ε.

The main idea of the proof is, at least formally, similar to that of Theorem 2.6.
One pieces together locally-defined pure nil-structures (that is, the dimension of
the stalks is locally constant), and then finds a way to make them into an honest
nil-structure. The main difference here, however, is that the process draws heavily
on Fukaya’s techniques. Namely, all of the work is done on the frame bundle of the
manifold, and then transfered to M . We give a brief outline.

Using a modified equivariant version of Theorem 2.1, one selects a collection of
O(n)-equivariant local fibrations of the frame bundle, as in (1), with almost flat
fibers. This is chosen such that it almost satisfies an intersection property much
like (F1) above. The collection must be modified in an O(n)-equivariant way to
ensure the property does hold. As with the proof of Theorem 2.6, an inductive
argument completes the construction of the nil-structure, as well as the invariant
metric.

The final step is to show that the nil-structure and invariant metric on FM will
induce those on M . Modulo certain “regularity properties”, the O(n)-invariance of
the metric g̃ε on FM implies that there is a unique metric gε on M such that the
bundle projection

π : FM −→M

is a Riemannian submersion, and is close to the original metric on M , in the sense of
the statement of the theorem. To show that the nil-structure Ñ on FM induces one
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on M takes a bit of work, as does showing that gε is (ρ, k)-found for appropriate ρ
and k. The last thing to verify is that the orbits of N are compact with ε-bounded
diamter. The O(n)-invariance of Ñ implies that the O(n)-action maps orbits to
orbits. This means M is partitioned into compact submanifolds –the orbits of N.
But since π is distance non-decreasing, for each orbit, we have

diam(Õ) < δ =⇒ diam(O) < δ.

Picking the appropriate δ for the orbits in FM will give the result in M .

3. The Ricci flow

The Ricci flow on a Riemannian manifold (M, g0) is the geometric evolution
equation

∂

∂t
g = −2Rc(2)

g(0) = g0

and was introduced by Hamililton in [18], where it was used to classify three-
dimensionl manifolds with positive Ricci curvature. It has since been used by
Perelman to resolve Thurston’s Geometrization Conjecture for three-dimensional
manifolds, and as a result the three-dimensional Poincaré conjecture. For exposi-
tions of Perelman’s work, see [2], [21], or [26].

Beyond this, the Ricci flow has proven to be a valuable tool in addressing many
questions in geometry and geometric analysis, and there is much active research in
this area. See, for example, the encyclopedic series by Chow, et al [10], [7], [8], [9]
(with another part forthcoming).

One can think of the Ricci flow as a type of heat equation, which attempts to
evenly distribute the Ricci curvature across the manifold. This, of course, can be
hindered by the topology of the manifold, and so there are issues of singularity
formation. For example, a manifold could flow to a point in finite time. Such
singularities complicate the study of the flow, but much is unknown even when
the flow exists for all time. We will see examples of both types of behavior in the
following subsection. As a result, Ricci flow solutions often provide nice examples
of collapsing families of Riemannian metrics, in the sense of Definition 1.1.

In this section, we will look at a few examples of collapsing Ricci flow solu-
tions and recall some of the basic ideas involved in studying the Ricci flow. This
should serve as preparation for Section 5, when we set up a different framework to
understand collapse that uses Riemannian groupoids.

3.1. Examples. Hamilton first showed that Ricci flow solutions enjoy short-time
existance and uniqueness. We say that a solution has maximal interval of existence
[t0, T ], where −∞ ≤ t0 < T ≤ ∞. Here are two examples, one where T is finite
and one where T = ∞. We will generally take t0 = 0 or t0 = 1.

Example 10. Consider the n-sphere, with standard metric gcan. We can determine
the behavior of the Ricci flow starting at gcan, although the approach is somewhat
indirect. Assume that we have a solution of the form g(t) = r(t)2gcan, for some
positive function r(t). Then the left side of (2) is

d

dt
g(t) = 2r(t)r′(t)gcan,
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and the right side is

−2 Rc[g(t)] = −2Rc[gcan] = −2(n− 1)gcan,

since Ricci curvature is scale-invariant. Since this is a solution of (2), the function
f must satisfy

d

dt
r =

1− n

r
, r(0) = r0.

This ordinary differential equation has the following solution:

r(t) =
√
r20 − 2(n− 1)t,

which is positive and decreasing for

−∞ < t <
r20

2(n− 1)
= T,

and r(T ) = 0. This means (Sn, g(t)) collapses, but not with bounded curvature:

K(t) = K(r2gcan) =
1
r2
K(gcan) −→∞

as t→ T . In the Gromov-Hausdorff sense,

lim
t→T

(Sn, g(t)) = ∗,

i.e., it converges to a point.

Example 11. Consider the Lie group

Nil3 =








1 x z
0 1 y
0 0 1




∣∣∣∣∣∣
x, y, z ∈ R



 ⊂ SL3R,

also known as the three-dimensional Heisenberg group. We obtain global coordi-
nates (x, y, z) from the obvious diffeomorphism with R3. Then the group multipli-
cation is

(x, y, z) · (z′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

There is a frame of left-invariant vector fields,

F1 =
∂

∂x
, F2 =

∂

∂y
+ x

∂

∂z
, F3 =

∂

∂z
,

and the only nontrivial Lie bracket relation is

[F1, F2] = F3.

The dual coframe is

θ1 = dx, θ2 = dy, θ3 = dz − xdy.

A family of left-invariant metrics on Nil3 is given by

ĝ(t) = A(t) θ1 ⊗ θ1 +B(t) θ2 ⊗ θ2 + C(t) θ3 ⊗ θ3,

and the Ricci flow is the following system of ordinary differential equations:

d

dt
A =

C

B
,

d

dt
B =

C

A
,

d

dt
C = − C

AB
.
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It is well-known that the flow will preserve the diagonality of an initial metric, and
the solution (with asymptotics) is

A(t) = A0K
−1/3(t+K)1/3 ∼ A0K

−1/3t1/3,

B(t) = B0K
−1/3(t+K)1/3 ∼ B0K

−1/3t1/3,

C(t) = C0K
1/3(t+K)−1/3 ∼ C0K

1/3t−1/3,

for the constant

K =
A0B0

3C0
.

This solution exists for all time, but as t→∞, we see that A,B →∞, and C → 0.
This is known as the “pancake” solution, as two directions are becoming more
and more spread out, while the third is shrinking. More precisely, the sectional
curvatures all all O(1/t), and the Gromov-Hausdorff limit is (R2, gcan), where gcan
is the standard Euclidean metric.

The behavior of the curvature in this example is typical enough that one says a
Ricci flow solution (M, g(t)) encounters a type III singularity at T = ∞ if

sup
M×[0,∞)

t
∣∣ Rm[g(t)]

∣∣ <∞.

In other words, the sectional curvatures all decay roughly like 1/t.

3.2. Solitons and the blowdown method. Given any differential equation, a
natural problem is to find any fixed points/stationary solutions. The only fixed
points of the Ricci flow are Ricci-flat manifolds, and the only fixed points of the
normalized Ricci flow7 are Einstein manifolds, which are Riemannian manifolds
(M, g) such that

Rc[g] = kg,

for some real number k (called the Einstein constant). There are serious topological
obstructions to admitting such metrics, and indeed, many manifolds do not. This
means that, given an arbitray Riemannian manifold, one cannot expect the Ricci
flow to have any fixed points. In particular, this means that if the Ricci flow exists
for all time, one should not expect “nice” behavior in the limit. We saw in Example
11 that the limit was somehow a manifold of lower dimension.

Despite a lack of genuine fixed points, there is a somewhat weaker notion that
is still valuable. We consider those solutions obtained from a given metric only by
scaling and pullback by diffeomorphisms.

Definition 3.1. A metric g0 on M is a Ricci soliton if there exists a function σ(t)
and a family {ηt} of diffeomorphisms of M such that

g(t) = σ(t)η∗t g0

is a solution of Ricci flow8.

7This is a modification for compact manifolds that preserves volume:
∂

∂t
g = −2Rc+

2

n

R
M scal dµR

M dµ
g.

8The soliton condition is actually equivalent to the existence of a constant λ and a complete
vector field X such that −2Rc[g0] = LXg0 + 2λg0, which is a generalization of the Einstein
condition.
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Next, we describe a method for finding solitons that Lott used extensively in
[22], and illustrate by finding a soliton on the Lie group Nil3 from Example 11.
Let M be a manifold with coordinates (x1, . . . , xn) in some neighborhood U ⊂M ,
let {F1, . . . , Fn} be a local frame with dual coframe {θ1, . . . , θn}. Suppose that
(M, ĝ(t)) is a Ricci flow solution such that the metric ĝ(t) stays diagonal, and that
its asymptotic behavior is given by some other metric g(t). We write

g(t) = gi(t) θi ⊗ θi,

where9 ĝi(t) ∼ gi(t) for all i = 1, . . . , n. Consider the blowdown of this solution,

gs(t) =
1
s
g(st),

which itself is another Ricci flow solution. The behavior of gs(t) as s→∞ tells us
about the behavior of the original solution g(t) whenever t is large.

The goal is to find a family of diffeomorphisms {φs : M →M}s>0, such that
φ∗sgs(t) is a Ricci flow solution for each s, and such that

g∞(t) = lim
s→∞

φ∗sgs(t)

exists. By Proposition 2.5 in [22], this limit (whenever it exists) is a soliton metric
on M .

Note that for the above limit to exist, it is necessary that φ∗sgi(st)/s is finite and
positive for each fixed s and t. In explicit calculations, it is extrememly helpful to
choose the family {φs} such that

φ∗sθ
i = αi(s) θi

for all i and for some functions αi(s). This is usually straight-forward when the
solution is diagonal.

Example 12. Returning to Example 11, call the asymptotic solution g(t). Then
we see that the blowdown is

gs(t) = A0K
−1/3s−2/3t1/3 θ1 ⊗ θ1

+B0K
−1/3s−2/3t1/3 θ2 ⊗ θ2

+ C0K
1/3s−4/3t−1/3 θ3 ⊗ θ3.

We now want to find the appropriate diffeomorphisms φs. Suppose that they
are of the form

φs(x, y, z) =
(
α(s)x, β(s)y, γ(s)z

)
.

It is simple, then, to see that the functions

α(s) = (A0K
−1/3)−1/2s1/3

β(s) = (B0K
−1/3)−1/2s1/3

γ(s) = α(s)β(s) = (A0B0K
−2/3)−1/2s2/3

work as desired. Thus,

φ∗sgs(t) = t1/3
(
θ1 ⊗ θ1 + θ2 ⊗ θ2

)
+

1
3
t−1/3 θ3 ⊗ θ3 = g∞(t),

9We use the symbol ∼ to mean a(t) ∼ b(t) if and only if lim
t→∞

a(t)

b(t)
= 1.
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and there is no need to take a limit. A quick check shows that this is still a solution
to Ricci flow, and that it satisfies

g∞(t) = tη∗t g∞(1)

for the diffeomorphisms

ηt(x, y, z) = (t−1/3x, t−1/3y, t−2/3z).

The metric g∞(1) is the unique “nilsoliton” in dimension three, as seen in [22], [1],
and [15].

4. Groupoids

A groupoid is a certain generalization of a group that allows for individual objects
to have “internal symmetries.” Although this description (and the first definition
below) is primarily algebraic, it turns out that groupoids allow for simultaneous
generalization of manifolds, quotient manifolds, and orbifolds—objects that can
undergo collapse. In this section, we will outline the ideas needed to set up a
framework for understanding collapse of Ricci flow solutions, which appears in the
following section.

Although the origins of the subject date back much further, pioneering work on
groupoids was done by Ehresmann [11] and Pradines [28]. Other foundational work
in the subject has been done by Haefliger. See [17], for example. A comprehen-
sive guide to the subject, with an emphasis on differential geometry, is a book by
Mackenzie, [24]. A more concise introduction, with an emphasis on foliation theory,
is the book by Moerdijk and Mrčun, [25]. Our exposition draws mostly from these
last two books. We also note that this section is a much-condensed and revised
version of several sections of a paper written by the author for David Ben-Zvi’s
class on Lie groups in Fall 2009.

4.1. Basic definitions.

Definition 4.1. A groupoid is a (small) category in which all morphisms are in-
vertible.

This means there is a set B of objects, usually called the base, and a set G of
morphisms, usually called the arrows. We say that G is a groupoid over B and
write G ⇒ B, or just G when the base is understood. We sometimes picture a
groupoid as a collection of points with various arrows connecting the points, and
write (x

g−→ y) to indicate that g is an arrow from the object x to the object y.
We can be much more explicit about the structure of a groupoid.
• Each arrow has an associated source object and an associated target object,

so there are two maps
s, t : G −→ B

called the source and target.
• Since a groupoid is a category, there is a multiplication of arrows

m : G×B G −→ G

where

G×B G = {(h, g) ∈ G×G | s(h) = t(g)} = (s× t)−1(∆B).

This just says that we can only compose arrows when the target of the first
and the source of the second agree.
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• Multiplication preserves sources and targets:

s(hg) = s(g), or s(x
g−→ y

h−→ z) = s(x
g−→ y),

t(hg) = t(h), or t(x
g−→ y

h−→ z) = t(y h−→ z),

and is associative:
k(hg) = (kh)g.

• For each object x ∈ B, there is an identity arrow, written 1x = (x 1x−→ x) ∈
G, and this association defines an injection

1 : B ↪−−→ G.

• For each arrow g ∈ G, there is an inverse arrow, written g−1 ∈ G, and this
defines a bijection

ι : G −→ G.

• Identities work as expected:

1t(g)g = g = g1s(g), or (x
g−→ y

1y−→ y) = (x
g−→ y) = (x 1x−→ x

g−→ y).

• Inversion swaps sources and targets:

s(g−1) = t(g), t(g−1) = s(g), or ι(x
g−→ y) = (y

g−1

−−→ x),

• Inverses work as expected, with respect to the identities:

g−1g = 1s(g), or (x
g−→ y

g−1

−−→ x) = (x 1x−→ x).

gg−1 = 1t(g), or (y
g−1

−−→ x
g−→ y) = (y

1y−→ y).

Thus we have a set of maps between B and G as follows:

B G
....................................................................................................

s

....................................................................................................
t

............. ............. ............. ............ ............ ª ι.

Example 13. Any set X can be viewed as a groupoid over itself, where the only
arrows are the identities. This is the trivial groupoid, or the unit groupoid, and is
simply written as X. The source and target maps and the identity injection are the
identity map idX , and multiplication is only defined between a point/arrow and
itself: xx = x.

Example 14. Let X be a set with a left group action by Γ. We define the action
groupoid X o Γ ⇒ X to have arrows

⋃

γ∈Γ,x∈X

(x
γ−→ γ · x) = Γ×X.

The source map is projection onto the second factor, and the target map is just
the group action. The identity injection is x 7→ (1Γ, x). Multiplication is given by
(γ, x)(γ′, γ · x) = (γ′γ, x).

There are various subsets of arrows associated to objects, and pairs of objects,
in a groupoid. The analogy with fiber bundles — a base embedded in a total space,
with projections — continues, as we have notions of various fibers.

Definition 4.2. If G ⇒ B is a groupoid, and x, y ∈ B, then
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(1) the source-fiber at x is the set of all arrows from x, namely

Gx = G(x, ·) = s−1(x) = {g ∈ G | s(g) = x};
(2) the target-fiber at y is the set of all arrows to y, namely

Gy = G(·, y) = t−1(y) = {g ∈ G | t(g) = y};
(3) the set of arrows from x to y is

Gy
x = G(x, y) = s−1(x) ∩ t−1(y) = {g ∈ G | x g−→ y};

(4) the isotropy group at x is the set of self-arrows of x, namely

Gx
x = s−1(x) ∩ t−1(x) = {g ∈ G | x g−→ x}.

Visually, one might picture the above sets as “dandelions” above each point in
the base. Some authors call the source-fiber a star and the target-fiber a costar,
for obvious reasons. Alternate terminology for the (uncreatively named) isotropy
group is the vertex group.

Example 15. Continuing Example 14, the isotropy groups of an action groupoid
are the usual isotropy groups: Γx = {γ ∈ Γ | γ · x = x}.

The notion of structure-preserving map for groupoids is the obvious one.

Definition 4.3. Let G ⇒ B and H ⇒ C be groupoids. A groupoid homomor-
phism is a functor φ : G→ H. That is, φ consists of two maps, φ0 : B → C and
φ1 : G→ H, that respect the multiplication and commute with all structure maps:

B G
....................................................................................................

sG

....................................................................................................
tG

............. ............. ............. ............ ............

C H
....................................................................................................

sH

....................................................................................................
tH

............. ............. ............. ............ ............

.....................................................................................
...
.........
...

φ0

.....................................................................................
...
.........
...

φ1

Explicitly, we require that for all x ∈ B, g ∈ G,
• φ1(gg′) = φ1(g)φ1(g′) for all g, g′ with s(g′) = t(g).
• φ0 ◦ sG = sH ◦ φ1,
• φ0 ◦ tG = tH ◦ φ1,
• φ0 ◦ 1G = 1H ◦ φ0,

Note that this last condition also implies that φ1 ◦ ιG = ιH ◦ φ1.

Definition 4.4. Let G ⇒ B and H ⇒ C be Lie groupoids, with two Lie groupoid
homomorphisms φ, ψ : G→ H. A natural transformation from φ to ψ is a smooth

map T : B → H such that for all x ∈ B, (φ(x)
T (x)−−−→ ψ(x)) ∈ H, and for all

(x
g−→ y) ∈ G, the following square commutes:

φ(x)

ψ(x)

φ(y)

ψ(y)

..............................................................................................................
...
.........
...

T (x)

....................................................................................................... ............
φ(g)

.................................................................................................... ............
ψ(g)

..............................................................................................................
...
.........
...

T (y)
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We can compose two transformations as follows. Let φ, ψ, ρ : G→ H be Lie group
homomorphisms, with transformations S : φ→ ψ, T : ψ → ρ. Define T ◦ S : φ→ ρ
to be the transformation with T ◦ S : B → H given by

(T ◦ S)(x) = (φ(x)
S(x)−−−→ ψ(x)

T (x)−−−→ ρ(x)) = T (x) ◦ S(x).

It is easy to see that this is well-defined, and so the composition of two transforma-
tions is again a transformation. From this, it is easy to see that Lie groupoids form
a 2-category, with objects Lie groupoids, morphisms Lie groupoid homomorphisms,
and 2-morphisms natural transformations.

4.2. Lie groupoids, bisections, and orbits. Until now, we have only considered
groupoids where G and B are sets. In most interesting cases, however, they have
more structure. For example, they could be topological spaces, in which caseG ⇒ B
is a topological groupoid. We will be concerned mainly with the case when the G
and B are smooth manifolds.

Definition 4.5. A Lie groupoid is a groupoid G ⇒ B such that B is a (Hausdorff)
smooth manifold, G is a (perhaps non-Hausdorff, non-second-countable) smooth
manifold, s : G→ B is a smooth submersion, 1 : B ↪→ G is a smooth embedding,
and all other maps are smooth.

Since we require that s is a submersion, the pullback G ×B G is a submanifold
of G × G, and multiplication is a smooth map G×B G→ G. Also, since s is a
submersion, so is t.

A groupoid homomorphism between Lie groupoids is a Lie groupoid homomor-
phism if it is smooth on objects and arrows. It is a submersion if the map on arrows
is, which also ensures that the map on objects is also.

Example 16. LetM be a smooth manifold with an open cover {Ui}i∈I . Associated
to this cover is a Lie groupoid G ⇒ B, where B = ti∈IUi, and G consists of arrows
between points in the disjoint union that correspond to the same point in the cover.
That is, if x ∈ Ui ∩Uj , there is an arrow (xi → xj), where xi is the copy of x in Ui

and xj is the copy of x in Uj .

The bundle-like structure of a groupoid lends itself to the study of maps from
the base into the arrows, i.e., sections.

Definition 4.6. A global bisection is a map σ : B → G of s : G→ B such that
s ◦ σ = idB and t ◦ σ : B → B is a diffeomorphism. If U ⊂ B is open, then a
local bisection of G is a section σ : U → G of s such that t ◦ σ is a diffeomorphism.
Let Bloc(G) be the set of local bisections of G, and let Dloc(G) be the set of
diffeomorphisms of B generated by the local bisections:

Dloc(G) = {t ◦ σ | σ ∈ Bloc(G)}.
Note that a (local) bisection is actually a section of the source map. The next

proposition demonstrates that local sections are plentiful.

Proposition 4.7. Given any g ∈ G, there exists an open set U ⊂ B and a local
bisection σ : U → G such that g ∈ σ(U).

Thus, we can think of the arrows of G as germs of diffeomorphisms of B. Also,
note that since s, t : G→ B are submersions, for all x ∈ B the fibers Gx = s−1(x)
and Gx = t−1(x) are closed submanifolds of G.
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One can think of the arrows of G ⇒ B as defining an equivalence relation on the
space of objects, so that the base is a collection of disjoint classes, which together
form an orbit space. Specifically, the image of

(t, s) : G −→ B ×B

defines an equivalence relation ∼ on B, by the groupoid axioms.

Definition 4.8. The orbit of G ⇒ B passing through x ∈ B is the equivalence
class of x under the relation ∼ above. Namely,

Ox = t(s−1(x)) = s(t−1(x)).

The orbit space of G is B/∼ .

Example 17. In Example 13, the orbits of the trivial groupoid are points of the
original space, and the orbit space is the space itself.

Example 18. In Example 14, the orbits of an action groupoid X oΓ are precisely
the orbits of the group action, and the orbit space is the quotient X/Γ.

Here a few more useful properties.

Theorem 4.9. Let G be a Lie groupoid, with x, y ∈ B. Then
(1) Gy

x = G(x, y) is a closed submanifold of G,
(2) Gx

x is a Lie group,
(3) Ox is an immersed submanifold of B,
(4) tx = t|Gx : s−1(x) → Ox is a principal Gx

x-bundle.

Definition 4.10. A Lie groupoid G ⇒ B is étale if G and B have the same
dimension.

It turns out that this notion is equivalent to asking that s be a local diffeomor-
phism. In fact, if G is étale, then all structure maps are local diffeomorphisms.
Additionally, if G is étale, then Gx, G

y, Gy
x, and Gx

x are all discrete.

Example 19. The trivial groupoid from Example 13 is étale.

Example 20. If Γ is a discrete group andM is a manifold, then the action groupoid
M o Γ is étale.

4.3. Equivalence of Groupoids. There are several notions of when two groupoids
are “the same.”

Definition 4.11. Let G ⇒ B be a Lie groupoid, and let U = {Ui}i∈I be an open
cover of B. The localization of G with respect to U is the groupoid GU ⇒ BU with
base

BU = ti∈IUi =
⋃

i∈I
x∈Ui

(i, x)

and arrows
GU =

⋃

i,j∈I
g∈s−1(Ui)∩t−1(Uj)

(i, g, j),

with the following structure maps:
• source: s(i, g, j) = (i, s(g))
• target: t(i, g, j) = (j, t(g))
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x2

1g2 2g1
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G GU
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U1

U2

Figure 2. A groupoid and its localization.

• identity: u(i, x) = (i, 1x, i)
• multiplication: (i, g, j)(j, h, k) = (i, gh, k)

We may also write xi for (i, x) and igj for (i, g, j). See Figure 2.

Definition 4.12. Let G ⇒ B and H ⇒ C be Lie groupoids. We say that G and
H are

(1) isomorphic if there exists an invertible homomorphism φ : G→ H;
(2) strongly equivalent if there exists a pair homomorphisms, φ : G→ H and

ψ : H → G, together with transformations

T : φ ◦ ψ −→ idH , S : ψ ◦ φ −→ idG;

(3) weakly equivalent if there exist localizations GU and HV such that GU and
HV are isomorphic.

The notion of strong equivalence carries over from category theory. It turns out
that weak equivalence is the correct notion in many contexts, as isomorphism and
strong equivalence are too restritive. Weak equivalence essentially tells us when the
isotropy groups and orbit spaces of two groupoids are “the same”.

Example 21. The groupoid corresponding to an open cover of a smooth manifold
M from Example 16 is weakly equivalent to the trivial groupoid M from Example
13, by definition.

Example 22. If a group Γ acts freely, properly discontinuously on a manifold M ,
then the action groupoid MoΓ is equivalent to the trivial groupoid on the quotient
manifold M/Γ.

Even though these examples are in some sense trivial, they are the most impor-
tant one for what is ahead.

4.4. Riemannian groupoids. In order to talk about the Ricci flow on a groupoid,
we must have a way to talk about the geometry of a groupoid. This involves a metric
on the base.
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Figure 3. A smooth path c in a groupoid.

In what follows, we will now use the letter γ to refer to arrows in a groupoid,
and the letter g will generally be used for a Riemannian metric. We begin with the
notion of a Riemannian groupoid, which allows for a simultaneous generalization
of a manifold, orbifold, and quotient manifold with Riemannian metric.

Definition 4.13. A Lie groupoid G is Riemannian if there is a Riemannian metric
on B such that the elements of Dloc act as isometries. One also says that such a
metric is G-invariant.

Thus, if g is a G-invariant metric on B, and σ : U → G is a local bisection, then
we require that (t ◦ σ)∗g = g.

Definition 4.14. A smooth path c in G consists of a partition 0 = t0 ≤ t1 ≤ · · · ≤
tk = 1 and a sequence

c = (γ0, c1, γ1, . . . , ck, γk),
where

ck : [ti−1, ti] −→ B

is smooth, γi ∈ G, and for all i,

ci(ti−1) = t(γi−1), ci(ti) = s(γi).

This a smooth path from t(γ0) to s(γk). See Figure 3.
The length of a smooth path c in G is given by

L(c) =
n∑

k=1

L(ci),

where L(ci) is the usual distance induced by the Riemannian metric on B.

There is a pseudometric d on the orbit space of a Riemannian groupoid, given
by

d(Ox, Oy) = inf
c
L(c),

where the infimum is taken over all smooth paths c with s(g0) = x and t(gk) = y.
If the pseudometric d is actually a metric and the orbits are all closed, then we

say that G is closed. The metric ball BR(Ox) ⊂ B is the union of all orbits of
distance less than R from Ox.
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There is a notion of convergence of étale Riemannian groupoids similar to the
Gromov-Hausdorff notion of convergence of metric spaces. First, we describe a
structure used in that definition.

Example 23. Let M be a manifold. For all nonnegative integers k, we define the
groupoid of k-jets of local diffeomorphisms of M . The base is defined to be M , and
the arrows are

Jk(M) =
{
φ : (U, p) −→ (V, q)

∣∣∣∣
U, V ⊂M open, p ∈ U, q ∈ V,
φ a pointed diffeomorphism

}
/∼ ,

where
φ : (U, p) −→ (V, q) ∼ ψ : (U ′, p′) −→ (V ′, q′)

if and and only if p = p′ and q = q′, and all derivatives at p of order ≤ k are equal.
If

((U, p)
φ−→ (V, q)) ∈ Jk(M),

then the source is p and the target is q.
Given a diffeomorphism F : M → N , there is an induced map

F∗ : Jk(M) −→ Jk(N)

[φ] 7−→ F∗[φ] = [F ◦ φ ◦ F−1]

This is well-defined, since if φ ∼ ψ : (U, p) → (V, q) and ψ are two equivalent k-jets,
then

F ◦ φ ◦ F−1, F ◦ ψ ◦ F−1 : (F (U), F (p)) −→ (F (V ), F (q)).
Thus, there is an action of Diff(M) on Jk(M) given by F · [φ] = F∗[φ]. Also,

each F ∈ Diff(M) induces a global bisection of Jk(M):

σF : M −→ Jk(M)

p 7−→ (F : (M,p) −→ (M,F (p)))

Definition 4.15. Let {(Gi, gi, Oxi)}∞i=1 be a sequence of closed, pointed, n-di-
mensional Riemannian groupoids, and let (G∞, g∞, Ox∞) be a closed, pointed Rie-
mannian groupoid. Let Jk be the groupoid of k-jets of local diffeomorphisms of
B∞. Then we say that

lim
i→∞

(Gi, gi, Oxi) = (G∞, g∞, Ox∞)

in the pointed Ck-topology if for all R > 0,
(1) there exists I = I(R) such that for all i ≥ I, there exists pointed diffeo-

morphisms
φi,R : BR(Ox∞) −→ BR(Oxi)

such that
lim

i→∞
φ∗i,Rgi|BR(Oxi

) = g∞|BR(Ox∞ )

in Ck(BR(Ox∞)),
(2) in the Hausdorff measure on the arrows of Jk(B∞),

φ∗i,R
[
s−1

i (BR/2(Oxi) ∩ t−1
i (BR/2(Oxi))

] −→ s−1
∞ (BR/2(Oxi) ∩ t−1

∞ (BR/2(Oxi)).

Since local isometries are actually determined by their 1-jets, one only needs to
consider convergence in the space of 1-jets.

With an invariant Riemannian metric come the notions of geometric tensors and
curvature, which allows one to consider the Ricci flow on such an object.



30 M. B. WILLIAMS

5. Ricci flow on Riemannian groupoids

In [22] and [23], Lott initiated the use of Riemannian groupoids in understanding
the notion of convergence under Ricci flow. One motivating issue is that, as we saw
in Example 11 and 10, the Gromov-Hausdorff limit of a Ricci flow solution (M, g(t))
as t→ T may not be an object of the same dimension (i.e., it may collapse). This
means some data has been lost in the process of taking the limit. The groupoid
formalism provides a way to keep track of all such data (e.g., the limiting object has
the same dimension as M), and to provide a picture of the limiting behavior that is
similar to, but more convenient than, the Gromov-Hausdorff notion of convergence.
One may consult [22] and [15] for background on Riemannian groupoids, or the
books [24], [25] for a more general introduction to groupoids.

5.1. A few recent results. Here are some of the results obtained by Lott using
the groupoid framework. The first theorem generalizes a result of Hamilton, which
is of great technical significance.

Theorem 5.1 ([22],[19]). Let {(Mi, pi, gi(t))}i=1∞ be a sequence of Ricci flow
solutions, such that

(1) (Mi, pi, gi(t)) is defined on −∞ ≤ A ≤ t ≤ Ω ≤ ∞,
(2) (Mi, gi(t)) is complete for all t ∈ (A,Ω),
(3) for all compact I ⊂ (A,Ω), there is some KI < ∞ such that for all x ∈

Mi, t ∈ I,
|Rm[gi](x, t)| ≤ KI .

After passing to a subsequence, Ricci flow solutions gi(t) converge smoothly to a
Ricci flow solution g∞(t) on a pointed étale Riemannian groupoid (G∞, Ox∞), for
t ∈ (A,Ω).

The sequences of Ricci flow solutions in this theorem may arise, for example, from
taking a blowdown of an existing solution. In the type III case, we are guaranteed
subsequential convergence to a solution on a groupoid.

Corollary 5.2. If (M,p, g(t)) is a Type-III Ricci flow solution, then for any si →
∞, there is a subsequence, also called si, and a pointed étale Riemannian groupoid
(G∞, Ox∞ , g∞(t)), t ∈ (0,∞) such that

lim
i→∞

(M,p, gsi(t)) = (G∞, Ox∞ , g∞(t)).

This corollary is used to give a nice description of the Ricci flow on three-
dimensional locally homogeneous geometries. The symbol “∼=” here refers to weak
equivalence of groupoids, which are all either trivial groupoids or action groupoids.

Theorem 5.3 ([22]). Let (M3, p, g(t)) be a finite-volume pointed locally homoge-
neous Ricci-flow solution that exists for all t ∈ (0,∞). Then

lim
s→∞

(M3, p, gs(t))

exists, and it is an expanding soliton on a pointed three-dimensional étale groupoid
G∞. Let Γ = π1(M,p), and let ΓR = α−1(α(Γ)) for homomorphisms α to be
defined. Then the groupoid G∞ and the metric g∞(t) are given as follows.

(1) If (M, g(0)) has constant negative curvature, then

G∞ ∼= H3 o Γ ∼= M,

and g∞ has constant sectional curvature −1/4t.
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(2) If (M, g(0)) has R3-geometry, there is a homomorphism

α : Isom(R3) −→ Isom(R3)/R3 ∼= O(3),

where R3 is the subgroup of translations. Then

G∞ ∼= R3 o ΓR,

and g∞ is the constant flat metric.
(3) If (M, g(0)) has Sol-geometry, there is a homomorphism

α : Isom(Sol) −→ Isom(Sol)/R2,

where R2 ⊂ Sol ⊂ Isom(Sol) are normal subgroups. Then

G∞ ∼= SoloΓR,

and g∞ = dx2+4tdy2+dz2, for the appropriate choice of coordinates x, y, z.
(4) If (M, g(0)) has Nil-geometry, there is a homomorphism

α : Isom(Nil) −→ Isom(Nil)/Nil,

where Nil ⊂ Isom(Nil) acts by left multiplication. Then

G∞ ∼= NiloΓR,

and g∞ = dx2/3t1/3 + t1/3(dy2 + dz2), for the appropriate choice of coor-
dinates x, y, z.

(5) If (M, g(0)) has (R×H2)-geometry, there is a homomorphism

α : Isom(R×H2) −→ Isom(R×H2)/R ∼= Z× Isom(H2).

Then

G∞ ∼= (R×H2)o ΓR,

and g∞ = gR+gH2(t), where gh2(t) has constant sectional curvature −1/2t.
(6) If (M, g(0)) has S̃L2 R-geometry, there is a homomorphism

α : Isom
(
S̃L2 R

)
−→ Isom

(
S̃L2 R

)
/R ∼= Isom(H2).

Then

G∞ ∼= (R×H2)× (Ro α(Γ)),

where α(Γ) ⊂ Isom(H2) acts linearly on R via the orientation homomor-
phism α(Γ) → Z/2, and g∞ = gR + gH2(t), where gh2(t) has constant sec-
tional curvature −1/2t.

The compactness theorem is also a major ingredient in Lott’s significant progress
in analyzing Ricci flow on three-dimensional manifolds.

Theorem 5.4 ([23]). If (M3, g(t)) is a Ricci flow solution, with sectional curvatures
that are O(t−1) and diameter that is O(t1/2), then the pullback solution (M̃3, g̃(t))
on the universal cover approaches a homogeneous expanding soliton.
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5.2. Collapse of Ricci flow solutions on groupoids. Here we give a detailed
account of how the groupoid framework is used. Namely, we use it to describe
three-manifolds with nil-geometry, and essentially prove part (4) of Theorem 5.3.
The work follows Examples 11 and 12.

Definition 5.5. If a sequence {Gi} of groupoids, all of whose orbits are discrete,
converges to a groupoid G∞ whose orbit space is not discrete, then we say the
sequence collapses.

Our analysis here follows the examples found in [15], which give concrete pic-
tures of collapse. Here is the basic idea, tailored to our present context. In order to
understand the collapse under Ricci flow of compact, locally homogenous manifolds
with “nil geometry”, we replace such a manifold (M = Nil3 /Γ, g) by its representa-
tion as a Riemannian “action” groupoid, (Nil3oΓ, g̃). Also called a “cross-product”
groupoid, this is an object whose orbit space is M . Here,

π : (Nil3, g̃) −→ (M, g)

is the universal cover with induced metric, and Γ ⊂ Nil3 is a discrete, cocompact
subgroup that can be interpreted in several ways. It is the fundamental group
π1(M,m0), the group of deck transformation of the cover, or a group of isometries
acting transitively on (Nil3, g̃). In any case, it acts by left translation on Nil3.

If g(t) is a Ricci flow solution on M , then we are considering a solution g̃(t) on
Nil3. By the prevous section, the blowdown technique provides a sequence φsg̃s(t)
of metrics converging to a soliton metric g̃∞(t). To understand the limiting behavior
as s→∞, we now consider

(Nil3oΓs, φsg̃s(t)).

Note that the subgroup Γs acting on Nil3 depends on s, since the metric is changing.
If, in the limit, this discrete subgroup converges to a continuous subgroup (i.e., if the
orbit space of the limit groupoid is not discrete), then there is collapse. Therefore,
we must understand how this subgroup evolves.

Recall that the blowdown metrics g̃s(t) are obtained using diffeomorphisms

φs(x, y, z) = (α(s)x, β(s)y, γ(s)z).

(The explicit forms of the functions α, β, γ are not imporant here.) Then the limit
is

g̃∞(t) = φ∗sgs(t) = t1/3
(
θ1 ⊗ θ1 + θ2 ⊗ θ2

)
+

1
3
t−1/3θ3 ⊗ θ3.

Without loss of generality, after change of coordinates we can take Γs to be an
integer lattice. Therefore, write elements of Γs as

ha(s),b(s),c(s) = (a(s), b(s), c(s)) ,



COLLAPSE IN RIEMANNIAN GEOMETRY 33

with a, b, c ∈ Z. These isometries act on (Nil3, g̃s(t)) by left translation and, as
deck transformations, they pull back by conjugation. Therefore,

φ∗xha,b,c(x, y, z) = φ−1
x ha,b,cφs(x, y, z)

= φ−1
x ha,b,c(αx, βy, γz)

= φ−1
x (αx+ a, βy + b, γz + c+ aβy)

= (x+ a/α, y + b/β, z + c/γ + aβy/γ),

=
(
x+

a(s)
α(s)

, y +
b(s)
β(s)

, z +
c(s)
γ(s)

+
a(s)
α(s)

y

)
,

using the component-wise form of the group multiplication.
It is a basic fact that, given any strictly increasing sequence {σj} with σj →∞

as j → ∞, and any u ∈ R, there is some sequence of integers {τj} such that
τj/σj → u. Indeed, take zj = bsjuc.

Therfore, consider any strictly increasing sequence {sj} with sj →∞ as j →∞.
The sequences {α(sj)}, {β(sj)}, and {γ(sj)} are also strictly increasing. Then
given any real numbers u, v, w, we may choose (a(sj), b(sj), c(sj)) ∈ Γsj such that

lim
j→∞

a(sj)
α(sj)

= u, lim
j→∞

b(sj)
β(sj)

= v, lim
j→∞

c(sj)
γ(sj)

= w.

This means that as j → ∞, the isometries φ∗sj
ha,b,c converge to isometries hu,v,w

of g̃∞(t) that act on Nil3 as follows:

hu,v,w(x, y, z) = (x+ u, y + v, z + w + uy).

The u, v, w were arbitary real numbers, so every element of Nil3 is attained this
way. This means Γsj converges to a continuous group: the entire group Nil3.

We conclude that

lim
j→∞

(Nil3oΓsj , φ
∗
sj
g̃sj (t)) = (Nil3oNil3, g̃∞(t))

as Riemannian groupoids. There is maximal collapsing, as the orbit space of the
groupoid Nil3oNil3 is a point.

Remark. Note that this is a different description than the “pancake” model, which
occurs as t→∞. The model here considers metrics approaching the actual soliton
metric.

5.3. Compactification of Type-III solutions. Here is an interesting descrip-
tion of type III Ricci flow solutions that is similar to the approach to Riemannian
manifolds with bounded curvature and diamater taken by Gromov and Fukaya.
Consider the closure of the space of pointed, n-dimensional Ricci flow solutions on
étale groupoids such that

sup
t∈(0,∞)

t‖Rm(g(t))‖ ≤ K

for some given K > 0. As a consequence of Theorem 5.1, this space is compact.
Call it Sn,K . The blowdown procedure from above defines an R+-action on Sn,K :

R+ × Sn,K −→ Sn,K

(s, g(·)) 7−→ gs(·)
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Therefore understanding the behavior of a Type-III Ricci flow solution is a matter
of understanding an R+-orbit in Sn,K . In particular, if g(·) ∈ ∂Sn,K , then it has a
nil-structure.

Example 24. We end with a simple example of such a Ricci flow solution. Consider
a flat torus (Tj , g0), which we can represent as an action groupoid RjoZj . Finding
the limit as in the previous section, we obtain (RjoRj , g0) (i.e., it is fully collapsed).
Let (M̂n−j , ĝ(·)) be a pointed Ricci flow solution with sup t‖Rm[ĝ(t)]‖ ≤ K. Then
the product is a flow on the groupoid

(
(M̂ × Rj)oRj , ĝ(·) + g0

)
,

and this is in ∂Sn,K , since it is a limit of flows on M̂ × Tj .
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