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1. Introduction

A groupoid is a certain generalization of a group that allows for individual
elements to have “internal symmetries.” We begin with two examples of
groupoids that arise naturally in many situations.

Example 1. Let X be a topological space. Define Π(X) to be the set
of all homotopy classes of paths (relative to endpoints) between points in
X. Notice that since there is a constant path 1x at each x ∈ X, the map
x 7→ 1x is an injection X ↪→ Π(X). There is a multiplication defined on
homotopy classes of paths, which is given by concatenation. However, this
is only defined when the endpoint of the first path is the starting point of
the second. With respect to this multiplication, each class of paths has an
inverse, simply given by the class of the reverse of any path in the class. For
fixed x ∈ X, consider those y ∈ X such that there exists a homotopy class
of paths in Π(X) from x to y. In this way, we see that Π(X) determines
the set of path-components π0(X). Similarly, if we restrict our attention to
a single x0 ∈ X, then the collection of homotopy classes of paths in X that
start and end at x0 is a group: the fundamental group π1(X,x0), based at
x0. We call Π(X) the fundamental groupoid of X.

Example 2. Let M be a smooth manifold and let E
π−→ M be a vector

bundle. Let GL(E) be the collection of all linear isomorphisms between
fibers:

GL(E) = {ϕ : Ex −→ Ey | x, y ∈M,ϕ an isomorphism}.
1
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For each x ∈M , the fiber Ex always has the identity isomorphism idEx , and
this gives an embedding M ↪→ GL(E). There is a multiplication on GL(E),
which is defined by composition of maps, whenever possible:

Ex
ϕ−→ Ey

ψ−→ Ez

for x, y, z ∈M . Since all maps are isomorphisms, they are all are invertible:
given any ϕ : Ex → Ey in GL(E), the inverse ϕ−1 : Ey → Ex is in GL(E) as
well. Above any given x ∈M , the set of isomorphisms Ex → Ex is a group,
isomorphic to GL(V ), where V is a typical fiber of E. We call GL(E) the
general linear groupoid of the bundle E.

In this paper, we give an overview of the theory of groupoids, with an
emphasis on Lie groupoids. The approach is mostly broad. We prove only
a few small results to give some of the flavor of the mathematics involved,
while hoping to give wide range of details, so as to provide a basic picture
of the subject.

Although the origins of the subject date back much further, pioneering
work on groupoids was done by Ehresmann [Ehr59] and Pradines [Pra66].
Other foundational work in the subject has been done by Haefliger. See
[Hae01], for example. A comprehensive guide to the subject, with an em-
phasis on differential geometry, is a book by Mackenzie, [Mac05]. A more
concise introduction, with an emphasis on foliation theory, is the book by
Moerdijk and Mrčun, [MM03]. Our exposition draws mostly from these last
two books.

2. Basic Definitions and Examples

Definition 2.1. A groupoid is a (small) category in which all morphisms
are invertible.

This means there is a set B of objects, usually called the base, and a set
G of morphisms, usually called the arrows. One says that G is a groupoid
over B and writes G⇒ B, or just G when the base is understood. We can
be much more explicit about the structure of a groupoid. To begin with,
each arrow has an associated source object and an associated target object.
This means that there are two maps

s, t : G −→ B

called the source and target, respectively. Since a groupoid is a category,
there is a multiplication of arrows

m : G×B G −→ G
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where G×B G fits into the pullback square:

G×B G G

G B

..................................................................................... ............

............................................................................................................
.....
.......
.....

................................................................................................................. ............
t

............................................................................................................
.....
.......
.....

s

More explicitly,

G×B G = {(h, g) ∈ G×G | s(h) = t(g)} = (s× t)−1(∆B).

This just says that we can only compose arrows when the target of the first
and the source of the second agree. This multiplication preserves sources
and targets:

s(hg) = s(g), t(hg) = t(h),

and is associative:
k(hg) = (kh)g.

For each object x ∈ B, there is an identity arrow, written 1x ∈ G, and this
association defines an injection

1 : B ↪−−→ G.

For each arrow g ∈ G, there is an inverse arrow, written g−1 ∈ G, and this
defines a bijection

ι : G −→ G.

The identities and inverses satisfy the usual properties. Namely, identities
work as expected:

1t(g)g = g = g1s(g),

inversion swaps sources and targets:

s(g−1) = t(g), t(g−1) = s(g),

and inverses work as expected, with respect to the identities:

g−1g = 1s(g), gg−1 = 1t(g).

Thus we have a set of maps between B and G as follows:

B G
....................................................................................................

s

....................................................................................................
t

............. ............. ............. ............ ............ 	 ι.

It is perhaps helpful to picture a groupoid as a collection of points with

various arrows connecting the points. For example, we often write (x
g−→ y)

to indicate that g is an arrow with source x and target y. We can write the
properties above in this notation:

• s(x g−→ y
h−→ z) = s(x

g−→ y)

• t(x g−→ y
h−→ z) = t(y

h−→ z)

• ι(x g−→ y) = (y
g−1

−−→ x)

• (x
g−→ y

1y−→ y) = (x
g−→ y) = (x

1x−→ x
g−→ y)
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• (x
g−→ y

g−1

−−→ x) = (x
1x−→ x)

• (y
g−1

−−→ x
g−→ y) = (y

1y−→ y)

It is not difficult to see that two examples given in the introduction –
the fundamental groupoid of a space and the general linear groupoid of a
bundle– are indeed groupoids. We now give several more basic examples.

Example 3. Any set X can be viewed as a groupoid over itself, where
the only arrows are the identities. This is the trivial groupoid, or the unit
groupoid, and is simply written as X. The source and target maps are the
identity map idX , and multiplication is only defined between a point/arrow
and itself: xx = x.

Example 4. Any set X gives rise to the pair groupoid of X. The base is
X, and the set of arrows is X × X, so we have X × X ⇒ X. The source
and target maps are the first and second projection maps. Multiplication is
defined as follows: (x, x′)(x′, x′′) = (x, x′′).

Example 5. Any group can be considered to be a groupoid over a point in
the obvious way. More generally, given a collection of points, a collection of
groups over those points is a groupoid.

Example 6. Let X be a set with a left group action by Γ. We define the
action groupoid X o Γ over X to have arrows∪

x∈X,γ∈Γ
(x

γ−→ γ · x) = Γ×X.

Multiplication is given by (γ, x)(γ′, γ · x) = (γ′γ, x).

There are various subsets of arrows associated to objects, and pairs of
objects, in a groupoid. The analogy with fiber bundles –a base embedded
in a total space, with projections– continues, as we have notions of various
fibers.

Definition 2.2. If G⇒ X is a groupoid, and x, y ∈ B, then

(1) the source-fiber at x is the set of all arrows from x, namely

Gx = G(x, ·) = s−1(x) = {g ∈ G | s(g) = x};

(2) the target-fiber at y is the set of all arrows to y, namely

Gy = G(·, y) = t−1(y) = {g ∈ G | t(g) = y};

(3) the set of arrows from x to y is

Gyx = G(x, y) = s−1(x) ∩ t−1(y) = {g ∈ G | x g−→ y};

(4) the isotropy group at x is the set of self-arrows of x, namely

Gxx = s−1(x) ∩ t−1(x) = {g ∈ G | x g−→ x}.
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x y x

Gx
xGx Gy

Figure 1. A source-fiber, a target-fiber, and an isotropy group.

Visually, one might picture the above sets as “dandelions” above each
point in the base. See Figure 1. Some authors call the source-fiber a star
and the target-fiber a costar, for obvious reasons. Alternate terminology for
the (uncreatively named) isotropy group is the vertex group.

Proposition 2.3. The isoptropy group Gxx of x is in fact a group.

Proof. The multiplication is inherited from G is associative and is defined
for each g ∈ Gxx, since s(g) = x = t(g). The identity 1x is in Gxx, and if
g ∈ Gxx, then g−1 is as well, since s(g−1) = t(g) = x = s(g) = t(g−1). �
Example 7. Continuing Example 1, the isotropy groups of the fundamental
groupoid are the fundamental groups of the space, and are all isomorphic.

Example 8. Continuing Example 2, the isotropy groups of the general
linear groupoid are the general linear groups of the fibers, and are all iso-
morphic.

The notion of structure-preserving map for groupoids is the obvious one.

Definition 2.4. Let G ⇒ B and H ⇒ C be groupoids. A groupoid ho-
momorphism is a functor ϕ : G→ H. That is, ϕ consists of two maps,
ϕ0 : B → C and ϕ1 : G→ H, that respect the multiplication and commute
with all structure maps:

B G
....................................................................................................

sG
....................................................................................................

tG

............. ............. ............. ............ ............

C H
....................................................................................................

sH
....................................................................................................

tH

............. ............. ............. ............ ............

...................................................................................
.....
.......
.....

ϕ0

...................................................................................
.....
.......
.....

ϕ1

Explicitly, we require that for all x ∈ B, g ∈ G,
• ϕ1(gg′) = ϕ1(g)ϕ1(g

′) for all g, g′ with s(g′) = t(g).
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• ϕ0 ◦ sG = sH ◦ ϕ1,
• ϕ0 ◦ tG = tH ◦ ϕ1,
• ϕ0 ◦ 1G = 1H ◦ ϕ0,

Note that this last condition also implies that ϕ1 ◦ ιG = ιH ◦ ϕ1.

3. Lie Groupoids and Bisections

Until now, we have only considered groupoids where G and B are sets.
In most interesting cases, however, they have more structure. For example,
they could be topological spaces, in which case G ⇒ B is a topological
groupoid. We will be concerned mainly with the case when the G and B are
smooth manifolds.

Definition 3.1. A Lie groupoid is a groupoid G ⇒ B such that B is a
(Hausdorff) smooth manifold, G is a (perhaps non-Hausdorff, non-second-
countable) smooth manifold, s : G→ B is a smooth submersion, 1 : B ↪→ G
is a smooth embedding, and all other maps are smooth.

Since we require that s is a submersion, the pullback G ×B G is a sub-
manifold of G×G, and multiplication is a smooth map G×B G→ G. Also,
since s is a submersion, so is t.

A groupoid homomorphism between Lie groupoids is a Lie groupoid ho-
momorphism if it is smooth on objects and arrows. It is a submersion if the
map on arrows is, which also ensures that the map on objects is also.

Example 9. Let M be a smooth manifold with an open cover {Ui}i∈I .
Associated to this cover is a Lie groupoid G⇒ B, where B =

⨿
i∈I Ui, and

G consists of arrows between points in the disjoint union that correspond
to the same point in the cover. That is, if x ∈ Ui ∩ Uj , there is an arrow
(xi → xj), where xi is the copy of x in Ui and xj is the copy of x in Uj .

For the following two examples, let (M,F) be a foliated manifold. Each
leaf L has a smooth structure such that L is an immersed submanifold of
M .

Example 10. The monodromy groupoid of (M,F) is Mon(M,F) ⇒ M .
We define the arrows as follows. If x, y ∈ M are on the same leaf L, then
Mon(M,F)yx is the set of homotopy classes of paths in L from x to y, relative
to endpoints. If x and y are not in the same leaf, there are no arrows between
them. Multiplication of paths is concatenation. Note that

Mon(M,F)xx
∼= π1(L, x),

the fundamental group of the leaf L. One can check that Mon(M,F) is a
Lie groupoid.

Example 11. The holonomy groupoid of (M,F) is defined similarly, replac-
ing homotopy with holonomy. We again have

Hol(M,F)xx
∼= Hol(L, x),
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the holonomy group of the leaf L. One can check that Hol(M,F) is a Lie
groupoid.

Example 12. LetG be a Lie group with Lie algebra g. Define a Lie groupoid
T ∗G⇒ g as follows. For θ ∈ T ∗

gG, set

s(θ) = θ ◦ (Lg)∗, t(θ) = θ ◦ (Rg)∗.
For η ∈ T ∗

hG, the multiplication is

η · θ = η ◦ (Rg−1)∗ = θ ◦ (Lh−1)∗.

If we form the action groupoid G o g∗, where G acts by the coadjoint
representation

Ad∗(g)α = α ◦Ad(g−1),

then left-trivialization

G× g∗ −→ T ∗G

(g, α) 7−→ α ◦ (Lg−1)∗

is an isomorphism over g∗ of the Lie groupoids Go g∗ and T ∗G above.

Example 13. Let M be a manifold and Γ a Lie group. A Γ-connection

on M is a principal Γ-bundle P
π−→ M together with a connection θ on

P . We can think of it as a triple (Γ, P, θ) attached to M . The space of
connections for any fixed P is an affine space, but the space ConnΓ(M) of
all Γ-connections on M is a groupoid. The arrows are maps of connections:
Γ-bundle maps φ : P → P ′ such that θ∗θ′ = θ. There are several types of
arrows:

• (Γ, P, θ)→ (Γ, P, θ) with φ∗θ = θ,
• (Γ, P, θ)→ (Γ, P, θ′) with φ∗θ′ = θ,
• (Γ, P, θ)→ (Γ, P ′, θ′) with φ∗θ′ = θ.

This groupoid is a type of “infinite-dimensional” Lie groupoid, in a sense
that we shall not make precise.

The bundle-like structure of a groupoid lends itself to the study of maps
from the base into the arrows, i.e., sections.

Definition 3.2. A global bisection is a map σ : B → G of s : G→ B such
that s ◦ σ = idB and t ◦ σ : B → B is a diffeomorphism.

Note that a bisection is actually a section of the source map.

Proposition 3.3. The collection of global bisections of G ⇒ B is a group,
called the gauge group, with multiplication defined by

(τσ)(x) = τ(t(σ(x)))σ(x).

Proof. We first check that the group operation is well-defined, that is, that
we can actually multiply (in the groupoid) the two factors on the right side
of the above equation. Since τ is a section of s, we have

s(τ(t(σ(x)))) = idB(t(σ(x))) = τ(σ(x)),
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which is required for groupoid multiplication. This multiplication is also
associative, since it is based on that of the groupoid. The identity element
of this group is 1 : B ↪→ G, the unit map. We check:

(1σ)(x) = 1(t(σ(x)))σ(x) = 1t(σ(x))σ(x) = σ(x),

(σ1)(x) = σ(t(1(x)))1(x) = σ(t(1x))1x = σ(x)1s(x) = σ(x).

Finally, given a bisection σ, the inverse σ−1 is defined pointwise: σ−1(x) =
(σ(x))−1. We check that this makes sense:

(σ−1σ)(x) = σ−1(t(σ(x)))σ(x) (σσ−1)(x) = σ(t(σ−1(x)))σ−1(x)

= σ−1(s(σ−1(x)))σ(x) = σ(s(σ(x)))σ−1(x)

= σ−1(idB(x))σ(x) = σ(idB(x))σ
−1(x)

= σ−1(x)σ(x) = σ(x)σ−1(x)

= 1x = 1x. �
Of course, as with other objects that have sections, it is useful to have a

local description.

Definition 3.4. If U ⊂ B is open, then a local bisection of G is a section
σ : U → G of s such that t ◦ σ is a diffeomorphism. Let Bloc(G) be the set
of local bisections of G, and let Dloc(G) be the set of diffeomorphisms of B
generated by the local bisections:

Dloc(G) = {t ◦ σ | σ ∈ Bloc(G)}.

The next proposition demonstrates that local sections are plentiful.

Proposition 3.5. Given any g ∈ G, there exists an open set U ⊂ B and a
local bisection σ : U → G such that g ∈ σ(U).

Proof. Since s and t are submersions, there exists an open neighborhood U
of g such that

{(s(h), t(h)) | h ∈ U}
is the graph of a diffeomorphism. Then we can take a local section of s
transverse to the fiber of t. Namely, choose V ⊂ TgG such that

V ⊕ ker s∗|g ⊕ ker t∗|g = TgG.

Then there is a section σ : U → G of s such that

σ∗|s(g)(Tσ(g)B) = V.

Thus (t◦σ)∗ is an isomorphism at each s(g), and we can shrink U if necessary
to make t ◦ σ a diffeomorphism. �

Thus, we can think of the arrows of G as germs of diffeomorphisms of B.
Also, note that since s, t : G→ B are submersions, for all x ∈ B the fibers
Gx = s−1(x) and Gx = t−1(x) are closed submanifolds of G.

Proposition 3.6. There is a natural right action of the isotropy group Gxx
on Gx = s−1(x), which is free and transitive on fibers of t|Gx.
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Proof. The action is just precomposition with elements of Gxx. Consider a
fiber of t|Gx , say (tGx)

−1(y). If h, k are elements of this fiber, then

s(h) = x = s(k), t(h) = y = t(k).

This means (tGx)
−1(y) = Gyx. The action on this fiber is free, since if g ∈ Gxx

and h ∈ Gyx, then

hg = h⇒ h−1hg = h−1h⇒ 1s(h)g = 1s(h) ⇒ 1xg = 1x ⇒ g = 1x.

The action is transitive, since if h, k ∈ Gyx, let g = h−1k ∈ Gxx. It is easy to
check that hg = k. �

One can think of the arrows of G⇒ B as defining an equivalence relation
on the space of objects, so that the base is a collection of disjoint classes,
which together form an orbit space. Specifically, the image of

(t, s) : G −→ B ×B

defines an equivalence relation ∼ on B, by the groupoid axioms.

Definition 3.7. The orbit of G⇒ passing through x ∈ B is the equivalence
class of x under the relation ∼ above. Namely,

Ox = t(s−1(x)) = s(t−1(x)).

The orbit space of G is B/∼ .

Example 14. Here we look at some orbits from previous examples.

• In Example 1, the orbits of the fundamental groupoid Π(X) are the
components of X, and the orbit space is π0(X).
• In Example 2, the single orbit of the general linear groupoid GL(E)
is the whole base manifold, and the orbit space is a point.
• In Example 6, the orbits of an action groupoid M o Γ are precisely
the orbits of the group action, and the orbit space is the quotien
M/Γ.
• In Examples 10 and 11, the orbits of the monodromy and holonomy
groupoids are the leaves of the foliation, and the orbit spaces are the
set of leaves.

Example 15. Let us consider a specific case of an action groupoid. The
real line acts on S1 by

R −→ S2

(t, z) 7−→ e2πitz

This puts a Lie groupoid structure on the cylinder R × S1. Think of the
base as the circle at t = 0. The source-fibers are lines perpendicular to the
base, and the target fibers are helices, meeting all circles t = c at a fixed
angle. The isotropy groups are Z× {z} for each z ∈ S1. See Figure 2.
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Figure 2. A groupoid structure on a cylinder.

Similarly, we could consider the action of S1 on itself:

S1 −→ S1

(w, z) 7−→ wnz

This would put a groupoid structure on the torus T2.

Here a few more useful properties.

Theorem 3.8. Let G be a Lie groupoid, with x, y ∈ B. Then

(1) Gyx = G(x, y) is a closed submanifold of G,
(2) Gxx is a Lie group,
(3) Ox is an immersed submanifold of B,
(4) tx = t|Gx : s

−1(x)→ Ox is a principal Gxx-bundle.

Definition 3.9. A Lie groupoid G⇒ B is étale if G and B have the same
dimension.

It turns out that this notion is equivalent to asking that s be a local
diffeomorphism. In fact, if G is étale, then all structure maps are local
diffeomorphisms. Additionally, if G is étale, then Gx, G

y, Gyx, and Gxx are all
discrete.

Example 16. The trivial groupoid from Example 3 is étale.

Example 17. If Γ is a discrete group and M is a manifold, then the action
groupoid M o Γ is étale.

4. Constructions on Groupoids

As with most other commonly studied mathematical objects, there are
various ways of producing new Lie groupoids from existing ones.

Definition 4.1. Let G ⇒ B be a Lie groupoid and ϕ : M → B a smooth
map. The induced groupoid ϕ∗(G) over M has base M and arrows

ϕ∗(G) =M ×B G×B M = {(x, g, y) | ϕ(x) g−→ ϕ(y)}.

The multiplication is given by that in G.
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Proposition 4.2. The induced groupoid ϕ∗(G) is a Lie groupoid if

t ◦ π1 : G×B M −→ B

is a submersion.

Proof. Since s is a submersion, G×B M is a smooth manifold:

G×B M G

M G

................................................................................ ............
π1

............................................................................................................
.....
.......
.....

π2

............................................................................................................
.....
.......
.....

................................................................................................................. ............
ϕ

............................................................................................................
.....
.......
.....

s

If t ◦ π1 is a submersion, then the upper part of the extended diagram gives
a smooth structure to ϕ∗(G):

ϕ∗(G)

G×B M

M

G

B

G

B

..................................................................................................................................................................................................................................................... ............

............................................................................................................
.....
.......
.....

................................................................................ ............
π1

............................................................................................................
.....
.......
.....

π2

................................................................................................................. ............
ϕ

............................................................................................................
.....
.......
.....

s

................................................................................................................. ............
t

............................................................................................................
.....
.......
.....

s

Now, the diagram

ϕ∗(G) G

M ×M B ×B

............................................................................................................
.....
.......
.....

(s, t)

............................................................................................................
.....
.......
.....

(s, t)

............................................................................................................................................ ............
ϕ× ϕ

.......................................................................................................................................................................... ............

defines a pull-back square, so all maps are smooth and ϕ∗(G) is a Lie
groupoid. �

Note that a map ϕ : M → B defines an induced groupoid homomorphism,
which we denote by

ϕ∗ : ϕ∗(G) −→ G.

Definition 4.3. Let G ⇒ B and H ⇒ C be Lie groupoids, with two Lie
groupoid homomorphisms ϕ, ψ : G→ H. A natural transformation from ϕ

to ψ is a smooth map T : B → H such that for all x ∈ B, (ϕ(x)
T (x)−−−→ ψ(x)) ∈
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H, and for all (x
g−→ y) ∈ G, the following square commutes:

ϕ(x)

ψ(x)

ϕ(y)

ψ(y)

............................................................................................................
.....
.......
.....

T (x)

.................................................................................................. ............
ϕ(g)

............................................................................................... ............
ψ(g)

............................................................................................................
.....
.......
.....

T (y)

We can compose two transformations as follows. Let ϕ, ψ, ρ : G→ H be
Lie group homomorphisms, with transformations S : ϕ→ ψ, T : ψ → ρ. De-
fine T ◦ S : ϕ→ ρ to be the transformation with T ◦ S : B → H given by

(T ◦ S)(x) = (ϕ(x)
S(x)−−−→ ψ(x)

T (x)−−−→ ρ(x)) = T (x) ◦ S(x).

Then for (x
g−→ y) ∈ G, the following diagram commutes:

ϕ(x)

ψ(x)

ϕ(y)

ψ(y)

ρ(x) ρ(y)

............................................................................................................
.....
.......
.....

S(x)

.................................................................................................. ............
ϕ(g)

............................................................................................... ............
ψ(g)

............................................................................................................
.....
.......
.....

S(y)

............................................................................................................
.....
.......
.....

T (x)

.................................................................................................... ............
ψ(g)

............................................................................................................
.....
.......
.....

T (y)

This gives the desired commutative square.
Thus, the composition of two transformations is again a transformation.

From this, it is easy to see that Lie groupoids form a 2-category, with objects
Lie groupoids, morphisms Lie groupoid homomorphisms, and 2-morphisms
natural transformations. We call this category GroupoidLie.

Definition 4.4. Let G ⇒ B,H ⇒ C be Lie groupoids. The product Lie
groupoid is G×H ⇒ B×B, with the obvious structure maps. The sum Lie
groupoid is written G+H, and is G

⨿
H ⇒ B

⨿
C, again with the obvious

structure maps.

These satisfy the normal universal properties of product and sum in the
categorical sense.

Definition 4.5. Let G ⇒ B be a Lie groupoid. A Lie subgroupoid of G is
a Lie groupoid G′ ⇒ B′, where ιB : B′ ↪→ B and ιG : G′ ↪→ G are injective
immersions, and the pair (ιM , ιG) is a Lie groupoid homomorphism.

There is also a notion of quotients of Lie groupoids, but we shall not
pursue it.
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g

x

x2

1g2 2g1

2g2

1g1

G GU

x1
U1

U2

Figure 3. A groupoid and its localization.

5. Equivalence of Groupoids

There are several notions of when two groupoids are “the same.”

Definition 5.1. Let G ⇒ B be a Lie groupoid, and let U = {Ui}i∈I be an
open cover of B. The localization of G with respect to U is the groupoid
GU ⇒ BU with base

BU =
⨿
i∈I

Ui =
∪
i∈I
x∈Ui

(i, x)

and arrows

GU =
∪
i,j∈I

g∈s−1(Ui)∩t−1(Uj)

(i, g, j),

with the following structure maps:

• source: s(i, g, j) = (i, s(g))
• target: t(i, g, j) = (j, t(g))
• identity: u(i, x) = (i, 1x, i)
• multiplication: (i, g, j)(j, h, k) = (i, gh, k)

We may also write xi for (i, x) and igj for (i, g, j). See Figure 3.

Definition 5.2. Let G⇒ B and H ⇒ C be Lie groupoids. We say that G
and H are

(1) isomorphic if there exists an invertible homomorphism ϕ : G→ H;
(2) strongly equivalent if there exist two homomorphisms, ϕ : G→ H

and ψ : H → G, together with transformations

T : ϕ ◦ ψ −→ idH , S : ψ ◦ ϕ −→ idG;
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(3) Morita equivalent if, given the pullback square

H ×C B B

H C

................................................................................... ............
π2

............................................................................................................
.....
.......
.....

π1

................................................................................................................. ............
sH

............................................................................................................
.....
.......
.....

ϕ

(a) the map

t ◦ π1 : H ×C B −→ C

(h, x) 7−→ tH(x)

is a surjective submersion, and
(b) the square;

G H

B ×B C × C

............................................................................................................................................................................................ ............
ϕ

............................................................................................................
.....
.......
.....

(sG, tG)

............................................................................................................
.....
.......
.....

(sH , tH)

.................................................................................................................................................... ............
ϕ× ϕ

is a fibered product
(4) weakly equivalent if there exist localizations GU and HV such that

GU and HV are isomorphic.

The notions of strong and Morita equivalence carry over from category
theory. If we consider étale groupoids, then one can show that Morita equiv-
alence and weak equivalence are the same. It turns out that weak equiv-
alence is the correct notion in many contexts, as isomorphism and strong
equivalence are too restritive.

Example 18. The groupoid corresponding to an open cover of a smooth
manifold M from Example 9 is weakly equivalent to the trivial groupoid M
from Example 3, by definition.

Example 19. If a group Γ acts freely, properly continuously on a manifold
M , then the action groupoid M o Γ is equivalent to the trivial groupoid on
the quotient manifold M/Γ.

6. Lie Algebroids

Just as Lie algebras are in some sense the infinitesimal versions of Lie
groups, Lie algebroids are objects that play a similar role for Lie groupoids.
In this section, we will give the basic definitions, provide a few examples,
and show how to construct the Lie algebroid of a Lie groupoid.

Definition 6.1. Let M be a manifold. A Lie algebroid on M is a vector

bundle A
π−→ M with a bundle map an: A→ TM , called the anchor map,
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and a Lie bracket on the space of sections Γ(A), such that for allX,Y ∈ Γ(A)
and f ∈ C∞(M),

[X, fY ] = f [X,Y ] + an(X)(f)Y,

and

an([X,Y ]) = [an(X), an(Y )].

Write (A, an) for a Lie algebroid A with anchor map an. We say that (A, an)
is

(1) transitive if an is fiberwise surjective,

(2) regular if the rank of an is locally constant,

(3) totally intransitive if an ≡ 0.

Definition 6.2. If (A, an), (A′, an′) are Lie algebroids over M , then a Lie
algebroid homomorphism is a bundle map φ : A→ A′ such that

(1) an′ ◦φ = an,
(2) φ[X,Y ] = [an(X), an(Y )] for all X,Y ∈ Γ(A).

In other words, φ preserves the brackets and the diagram commutes:

M

A A′

TM

.................................................................................................................... .........
...π

.................................................................................................................
...
............ π′

..............
..............

..............
..............

..............
..............

..............
..................
............

an
..............

..............
..............

..............
..............

..............
..............

.............................. an′

....................................................................................................................................................................................................................................................................... ............
φ

One can define Lie algebroid homomorphisms between algebroids over
different base manifolds, but it is considerably more complicated, and we
will not pursue it. However, we note that the collection of Lie algebroids,
together with Lie algebroid homomorphisms, forms a category that we call
Algebroidlie.

Example 20. Two trivial examples of Lie algebroids are

(1) Lie algebras over points,

(2) tangent bundles of smooth manifolds.

We remark that, in some sense, the anchor map connects the geometry of
A with that of M . There are several reasons, which we won’t explore here.
First, if A is transitive, a right inverse for the anchor is a connection in A.
Second, if A is regular, the image of the anchor defines a foliation onM , and
A is transitive over each leaf. The notion of restricting a Lie algebroid to
a general submanifold takes care to define precisely, but it is easy for open
sets.

Proposition 6.3. Let (A, an) be a Lie algebroid over M , and let U ⊂M be

open. The bracket on A restricts to A|U , making it a Lie algebroid A|U
π|U−−→

U .
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Proof. It is enough to show that for all X,Y ∈ Γ(A) with Y ≡ 0, we have
[X,Y ] ≡ 0 over U . Let x0 ∈ U and choose f : M → R such that f(x0) = 0
and f |M\U ≡ 1. Then

[X,Y ](x0) = [X, fY ](x0) = f(x0)[X,Y ](x0) + an(X)f(x0)Y (x0) = 0. �
Here are more examples that are less trivial. Let M be a manifold and

let g be a Lie algebra.

Example 21. Set A = TM ⊕ (M × g), where we consider M × g→M to
be a trivial vector bundle. If an = π1, i.e., projection onto the first factor,
and we define

[X ⊕ V, Y ⊕W ] = [X,Y ]⊕ (X(W )− Y (V ) + [V,W ]),

then A is a transitive Lie algebroid over M . It is called the trivial Lie
algebroid with structure algebra g.

Example 22. An involutive distribution ∆ ⊂ TM is a regular Lie algebroid,
with anchor map the inclusion and the standard bracket inherited from
sections of TM .

Example 23. Consider an infinitesimal action of g on M , that is, a Lie
algebra homomorphism

g −→ T(M)

X 7−→ X†

We may extend this action to maps V : M → g so that V † ∈ T(M), where

V †(m) = V (m)†(m).

The trivial bundle M × g→M is a Lie algebroid with an(m,X) = X†(m),
and

[V,W ] = LV †W − LW †V − [V,W ]•,

where [·, ·]• is the pointwise bracket on maps M → g, i.e., on sections of the
trivial bundle, and L is the usual Lie derivative.

Example 24. A Lie algebra bundle is a vector bundle L
π−→M with fiber g

and a field of brackets on Γ(L), such that L admits an atlas of trivializations,
all of whose transition maps are Lie algebra isomorphisms. A Lie algebra
bundle is a totally intransitive Lie algebroid.

We now construct the Lie algebroid associated to a Lie groupoid G⇒ B.

Recall that each (x
g−→ y) ∈ G gives rise to right-translation

Rg : Gy −→ Gx

(y
h−→ z) 7−→ (x

g−→ y
h−→ z)

That is, Rg(h) = hg. As in the Lie group case, these maps are diffeomor-
phisms. But here, they are only diffeomorphisms of source-fibers, but not
of the whole groupoid.
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Definition 6.4. The subbundle of source-vertical vectors of G is T sG =
ker(s∗) ⊂ TG. A vertical vector field is a section X : G→ T sG.

Definition 6.5. Writing π|s = π|T sG, let AG→ B be the pullback bundle
of T sG by the identity embedding:

B

AG

G

T sG

......................................................................................................... .......................
.......
......

1

............................................................................................................
.....
.......
.....

....................................................................................................... ............1∗

............................................................................................................
.....
.......
.....

π|s

That is, AG = {(x, V ) | s∗V = 0, 1x = π(V )} consists of vectors that are
source-tangent to identity arrows.

Definition 6.6. A vector field X ∈ T(G) is right-invariant if it is vertical
and satisfies

X(hg) = (Rg)∗Xh

for all (h, g) ∈ G ×M G. Let ΓR(T
sG) denote the collection of all right-

invariant vector fields on G.

Note that a vertical vector field is right-invariant if and only if it is de-
termined by its values on M ⊂ G, as expected:

X(g) = X(1t(g)g) = (Rg)∗X(1t(g)).

The space ΓR(T
sG) is a C∞(B)-module under the multiplication fX =

(f ◦ t)X, and is isomorphic to Γ(AG) as a C∞(B)-module:

ΓR(T
sG) ←→ Γ(AG)

X 7−→ X ◦ 1
−→
X ←−[ X

where
−→
X (g) = (Rg)∗X(t(g)).

One sees easily that ΓR(T
sG) is closed under the bracket on T(G), so the

above isomorphism gives a means to transfer the bracket to Γ(AG):

[X,Y ] = [
−→
X,
−→
Y ] ◦ 1.

Let us investigate the properties of this bracket. Let f ∈ C∞(B) and
X,Y ∈ Γ(AG). Then

−−−−−→
[X, fY ] = [

−→
X, (f ◦ t)

−→
Y ]

= (f ◦ t)[−→X,−→Y ] +
−→
X (f ◦ t)−→Y

=
−−−−−→
f [X,Y ] +

−→
X (f ◦ t)−→Y .
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But, since t is a surjective submersion and t ◦Rg = t for all g ∈ G, a right-

invariant vector field
−→
X is right-projectable: there exists X ′ ∈ T(B) such

that X ′(f) ◦ t = −→X (f ◦ t) for all f ∈ C∞(B). Thus

[X, fY ] = f [X,Y ] +X ′(f)Y,

that is, X ′ is the t-projection of the right-invariant vector field associated
to X.

Luckily, there is a somewhat simpler way to describe this phenomenon.

Definition 6.7. The anchor map an: AG→ TB of AG is the composite of
the following vector bundle maps:

AG T sG TG TB

B G G B

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

....................................................................................................... ............1∗ ....................................................................................................... ............
iG

............................................................................................................ ............
t∗

................................................................................................................. ............
1

................................................................................................................. ............
idG

................................................................................................................. ............
t

That is, an = t∗ ◦1∗. Note that this is indeed a morphism, since t◦1 = idB.

Lemma 6.8. For X ∈ Γ(AG),
−→
X is t-related to an(X).

Proof. We have

t∗
−→
X (g) = t∗(Rg)∗X(tg) = t∗X(tg),

and so
anx = t∗|1x : T1xs−1(x) −→ TxM. �

We conclude that for all f ∈ C∞(B) and X,Y ∈ Γ(AG),

(1) [X, fY ] = f [X,Y ] + an(X)(f)Y.

That is, the vector field X ′ from above is actually an(X). Additionally,

since using t-relatedness of
−→
X and an(X),

−→
Y and an(Y ), and

−−−→
[X,Y ] and

an([X,Y ]), we have

(2) an([X,Y ]) = [an(X), an(Y )].

Definition 6.9. The vector bundle AG→ B, together with an: AG→ TB
and the bracket on Γ(AG) (which satisfy (1) and (2)), is the Lie algebroid
of the Lie groupoid G.

If G ⇒ B and H ⇒ C are groupoids, let ϕ : G→ H be a Lie groupoid
homomorphism. We will construct the induced Lie algebra homomorphism
ϕ∗ = A(ϕ) : AG→ AH. Since ϕ is a homomorphism, it is a pair ϕ0, ϕ1,
which satisfies (among other things)

sH ◦ ϕ1 = ϕ0 ◦ sG,
ϕ1 ◦ 1G = 1H ◦ ϕ0.

This implies that the differential of ϕ1 restricts to vertical vectors:

(ϕ1)∗|s : T sG −→ T sH.
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Thus the middle row of the following diagram is a bundle map:

AG T sG T sH

B G H

TG TH

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

πG|s

............................................................................................................
.....
.......
.....

πH |s

................................................................................................................. ............
1G

................................................................................................................. ............
ϕ1

....................................................................................................... ............
1∗G

............................................................................................... ............
(ϕ1)∗|s

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

.......................
.

iG
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..............
............

.......................
.

iH

............................................................................................................ ............
(ϕ1)∗

This map covers

ϕ1 ◦ 1G = 1H ◦ ϕ0 : B −→ H.

Now, we get a unique bundle map ϕ∗ covering ϕ0 : B → C by considering
the following commutative cube:

B

C

G

H

AG

AH

T sG

T sH

.................................................................................................................... .........
...ϕ0

............................................................................................................................................................................................ ............
1G

.................................................................................................................... .........
...

ϕ1

............................................................................................................................................................................................ ............

1H

.................................................................................................................... .........
...ϕ∗

.................................................................................................................................................................................. ............
1∗G

................................................................................................................. .........
...

(ϕ1)∗

............................................................................................................................................................................. ............

1∗H

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

This map ϕ∗ satisfies 1
∗
H ◦ϕ∗ = (ϕ1)∗◦1∗G. It also preserves the Lie algebroid

structure, which follows from considering the next diagram:

AG T sG TG TB

B G G B

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

.................................................................................................................................................................................. ............
1∗G

.................................................................................................................................................................................. ............
iG

....................................................................................................................................................................................... ............
(tG)∗

............................................................................................................................................................................................ ............
1G

............................................................................................................................................................................................ ............
idG

............................................................................................................................................................................................ ............
tG

AH T sH TH TC

C H H C

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

............................................................................................................................................................................. ............

1∗H
............................................................................................................................................................................... ............

iH
....................................................................................................................................................................................... ............

(tH)∗

............................................................................................................................................................................................ ............

1H
............................................................................................................................................................................................ ............

idH
............................................................................................................................................................................................ ............

tH

.................................................................................................................... .........
...ϕ∗

.................................................................................................................... .........
...ϕ0

................................................................................................................. .........
...

(ϕ1)∗

.................................................................................................................... .........
...

ϕ1

.................................................................................................................... .........
...

(ϕ1)∗

.................................................................................................................... .........
...

ϕ1

.................................................................................................................... .........
...

(ϕ0)∗

.................................................................................................................... .........
...

ϕ0
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Using the definition of the anchor maps and the commutativity of the
squares, we have

anH ◦ϕ∗ = (tH)∗ ◦ iH ◦ 1∗H ◦ ϕ∗
= (tH)∗ ◦ iH ◦ (ϕ1)∗ ◦ 1∗G
= (tH)∗ ◦ (ϕ1)∗ ◦ iG ◦ 1∗G
= (tH ◦ ϕ1)∗ ◦ iG ◦ 1∗G
= (ϕ0 ◦ tG)∗ ◦ iG ◦ 1∗G
= (ϕ0)∗ ◦ (tG)∗ ◦ iG ◦ 1∗G
= (ϕ0)∗ ◦ anG .

Now, if C = B, then ϕ0 = idB, and

ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ]

for all X,Y ∈ Γ(AG), so this is a morphism of Lie algebroids, as previously
defined. Therefore, the associations just described are a covariant functor

GroupoidLie −→ Algebroidlie
G 7−→ AG
ϕ 7−→ ϕ∗

whenever the base B is fixed.

Example 25. The Lie algebroid of the pair groupoid M ×M ⇒ M from
Example 4 is the tangent bundle TM .

Example 26. Let G be a Lie group with Lie algebra g. The Lie algebroid
of an action groupoid M oG is the action algebroid M o g.

7. Basic Lie Theory of Groupoids

Here we give a brief sketch of the Lie theory as it applies to Lie groupoids
and Lie algebroids. The Lie theory relating Lie groups and Lie algebras
carries over to the groupoid/algebroid setting, with some modifications. In
particular, Lie’s third theorem, stating that all Lie algebras are integrable,
is false for algebroids. Here we give a quick overview of the general theory.

Definition 7.1. A Lie groupoid G ⇒ B is source-connected (resp. source-
simply-connected) if s−1(x) is connected (resp. simply connected) for all
x ∈ B.

Recall that every Lie group has a universal cover that is also a Lie group,
and it is simply connected. Additionally, a Lie group and its universal cover
have “the same” Lie algebra. This is also true for Lie groupoids.

Proposition 7.2. For any Lie groupoid G ⇒ B, there exists a source-
simply-connected Lie groupoid G̃ ⇒ B and a homomorphism G̃→ G that
induces an isomorphism AG̃→ AG of associated Lie algebroids.
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The idea of the proof of this proposition is to consider the foliation F of
G given by the fibers of the source map, and then show that

G̃ = Mon(G,F)/G

gives the desired Lie groupoid.
Next recall that a Lie subalgebra of the Lie algebra of a Lie group is the

Lie algebra of a unique Lie subgroup of the Lie group. This is also true for
Lie groupoids.

Definition 7.3. (1) Let (A, an) be a Lie algebroid over a manifold M ,
and let N ⊂M be an immersed submanifold. A Lie subalgebroid of
A over N is a subbundle A′ ⊂ A|N , equipped with a Lie algebroid
structure such that inclusion A′ ↪→ A is a Lie algebroid homomor-
phism.

(2) A Lie algebra is integrable if it is the associated Lie algebroid of some
Lie groupoid.

Proposition 7.4. Any Lie subalgebroid A′ of an integrable Lie algebroid A
is integrable.

To get an idea of the proof, suppose that A = AG, for some Lie groupoid
G⇒ B. Then A′ is some algebroid over some C ⊂ B. Let M = C ×B G be
the pull-back of t along the inclusion C ↪→ B. Then M has natural foliation
defined using the anchor of A and the inclusion of A′. As before, we set

H = Mon(M,F)/G

and show that its associated Lie algebroid is indeed A′.
Finally, we can integrate Lie algebra homomorphisms if the codomain is

nice enough.

Proposition 7.5. Let G⇒ B and H ⇒ C be Lie groupoids, with H source-
simply-connected. Let Φ: AG→ AH be a homomorphism of the associated
Lie algebroids over a map ϕ0 : B → C. Then there exists a unique map
ϕ1 : G→ H such that ϕ = (ϕ0, ϕ1) is a Lie groupoid homomorphism, and
ϕ∗ = Φ.

Corollary 7.6. The “universal cover” from before is unique.

We end this section by noting again that there exist Lie algebras that are
not integrabe, i.e., that do not appear as the Lie algebroid associated to any
Lie groupoid, but we shall not pursue their construction.

8. Lie Groupoids and the Ricci Flow

Now we give a more specific application of the theory of Lie groupoids.
The Ricci flow on a Riemannian manifold (M, g0) is the geometric evolu-

tion equation

∂

∂t
g = −2Ric

g(0) = g0
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and was introduced by Hamililton in [Ham82], where it was used to clas-
sify three-dimensionl manifolds with positive Ricci curvature. It has since
been used by Perelman to resolve Thurston’s Geometrization Conjecture
for three-dimensional manifolds, and subsequently the three-dimensional
Poincaré conjecture. For expositions of Perelman’s work, see [CZ06], [KL08],
or [MT07].

Beyond this, the Ricci flow has proven to be a valuable tool in addressing
many questions in geometry and geometric analysis, and there is much active
research in this area. See, for example, the encyclopedic series by Chow, et
al [CK04], [CCG+07], [CCG+08] (with another volume forthcoming).

One open question is the notion of collapse under Ricci flow. For ex-
ample, the unit sphere with standard metric (Sn, gcan) evolves to a round
point in finite time –from n-dimensional to 0-dimensional. Such singularities
complicate the study of the flow, but much is unknown even when the flow
exists for all time, in which case there can be collapse to objects of lower
dimension.

Example 27. Consider the Lie group Nil3, which we can think of as the
three-dimensional Heisenberg group:

Nil3 =


1 a c
0 1 b
0 0 1

 ∣∣∣∣∣∣ a, b, c ∈ R

.
We obtain global coordinates x, y, z from the obvious diffeomorphism with
R3. Then the group multiplication is

(x, y, z) · (z′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

Consider the left-invariant frame

F1 =
∂

∂z
, F2 =

∂

∂x
, F3 =

∂

∂y
+ x

∂

∂z
.

Note that this is actually a Milnor frame. The dual coframe is

θ1 = dz − xdy, θ2 = dy, θ3 = dx.

A family of left-invariant metrics on Nil3 is given by

g(t) = A(t)θ21 +B(t)θ22 + C(t)θ23

= A(t)(dz − xdy)2 +B(t)dy2 + C(t)dx2.

It is well-known that the flow will preserve the diagonality of such an ini-
tial metric, and the Ricci flow is thus the system of ordinary differential
equations

d

dt
A = − A2

BC
,

d

dt
B =

A

C
,

d

dt
C =

A

B
.
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The solution is

A(t) = A0

(
3A0

B0C0
t+ 1

)−1/3

,

B(t) = B0

(
3A0

B0C0
t+ 1

)1/3

,

C(t) = C0

(
3A0

B0C0
t+ 1

)1/3

.

This solution exists for all time, but as t → ∞, we see that A → 0, and
B,C → ∞. This is known as the “pancake” solution, as two directions are
becoming more and more spread out, while the third is collapsing.

Example 28. Let M be a manifold. For all nonnegative integers k, we
define the groupoid of k-jets of local diffeomorphisms of M . The base is
defined to be M , and the arrows are

Jk(M) =

{
ϕ : (U, p) −→ (V, q)

∣∣∣∣ U, V ⊂M open, p ∈ U, q ∈ V,
ϕ a pointed diffeomorphism

}
/∼ ,

where
ϕ : (U, p) −→ (V, q) ∼ ψ : (U ′, p′) −→ (V ′, q′)

if and and only if p = p′ and q = q′, and all all derivatives at p of order ≤ k
are equal. If

((U, p)
ϕ−→ (V, q)) ∈ Jk(M),

then the source is p and the target is q.
Given a diffeomorphism F : M → N , there is an induced map

F∗ : Jk(M) −→ Jk(N)

[ϕ] 7−→ F∗[ϕ] = [F ◦ ϕ ◦ F−1]

This is well-defined, since if ϕ ∼ ψ : (U, p)→ (V, q) and ψ are two equivalent
k-jets, then

F ◦ ϕ ◦ F−1, F ◦ ψ ◦ F−1 : (F (U), F (p)) −→ (F (V ), F (q)).

Thus, there is an action of Diff(M) on Jk(M) given by F · [ϕ] = F∗[ϕ].
Also, each F ∈ Diff(M) induces a global bisection of Jk(M):

σF : M −→ Jk(M)

p 7−→ (F : (M,p) −→ (M,F (p)))

The use of groupoids in studying collapse of manifolds under Ricci flow
was initiated by Lott in [Lot07b] and [Lot07a], and more recent work has
been done by Glickenstein in [Gli08]. Here, we sketch the basics of what is
currently known.

In what follows, we will now use the letter γ to refer to arrows in a
groupoid, and the letter g will generally be used for a Riemannian metric.
We begin with the notion of a Riemannian groupoid, which allows for a
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Figure 4. A smooth path c in a groupoid.

simultaneous generalization of a manifold, orbifold, and quotient manifold
with Riemannian metric.

Definition 8.1. A Lie groupoid G is Riemannian if there is a Riemannian
metric on B such that the elements of Dloc act as isometries. One also says
that such a metric is G-invariant.

Thus, if g is a G-invariant metric on B, and σ : U → G is a local bisection,
then we require that (t ◦ σ)∗g = g.

Definition 8.2. A smooth path c in G consists of a partition 0 = t0 ≤ t1 ≤
· · · ≤ tk = 1 and a sequence

c = (γ0, c1, γ1, . . . , ck, γk),

where

ck : [ti−1, ti] −→ B

is smooth, γi ∈ G, and for all i,

ci(ti−1) = t(γi−1), ci(ti) = s(γi).

This a smooth path from t(γ0) to s(γk). See Figure 4.
The length of a smooth path c in G is given by

L(c) =
n∑
k=1

L(ci),

where L(ci) is the usual distance induced by the Riemannian metric on B.
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There is a pseudometric1 d on the orbit space of a Riemannian groupoid,
given by

d(Ox, Oy) = inf
c
L(c),

where the infimum is taken over all smooth paths c with s(g0) = x and
t(gk) = y.

If the pseudometric d is actually a metric and the orbits are all closed,
then we say that G is closed. The metric ball BR(Ox) ⊂ B is the union of
all orbits of distance less than R from Ox.

There is a notion of convergence of étale Riemannian groupoids similar
to the Gromov-Hausdorff notion of convergence of metric spaces.

Definition 8.3. Let {(Gi, gi, Oxi)}∞i=1 be a sequence of closed, pointed,
n-dimensional Riemannian groupoids, and let (G∞, g∞, Ox∞) be a closed,
pointed Riemannian groupoid. Let Jk be the groupoid of k-jets of local
diffeomorphisms of B∞. Then we say that

lim
i→∞

(Gi, Oxi) = (g∞, Ox∞)

in the pointed Ck-topology if for all R > 0,

(1) there exists I = I(R) such that for all i ≥ I, there exists pointed
diffeomorphisms

ϕi,R : BR(Ox∞) −→ BR(Oxi)

such that

lim
i→∞

ϕ∗i,Rgi|BR(Oxi )
= g∞|BR(Ox∞ )

in Ck(BR(Ox∞)),
(2) in the Hausdorff measure on the arrows of Jk(B∞),

ϕ∗i,R
[
s−1
i (BR/2(Oxi)∩ t−1

i (BR/2(Oxi))
]
−→ s−1

∞ (BR/2(Oxi)∩ t−1
∞ (BR/2(Oxi)).

Since local isometries are actually determined by their 1-jets, one only
needs to consider convergence in the space of 1-jets.

Definition 8.4. If a sequence {Gi} of groupoids, all of whose orbits are
discrete, converges to a groupoid G∞ whose orbit space is not discrete, then
we say the sequence collapses.

Example 29. Let S1
i be the circle of radius 1/i with the standard metric

g(i), thought of as a Riemannian groupoid. In the sense just defined,

lim
i→∞

S1
i = Ro R,

where the metrics are the usual ones, and the points are, say, (1/i, 0) ∈
S1
i ⊂ R2. The limit does not have a discrete orbit space, so this sequence

collapses.

1Recall that this allows for the possibility that d(X,Y ) = 0 even when X ̸= Y .
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The following theorem of Lott generalizes a theorem of Hamilton, which
is of great technical significance.

Theorem 8.5 ([Lot07b],[Ham95]). Let {(Mi, pi, gi(t))}i=1∞ be a sequence
of Ricci flow solutions, such that

(1) (Mi, pi, gi(t)) is defined on −∞ ≤ A ≤ t ≤ Ω ≤ ∞,
(2) (Mi, gi(t)) is complete for all t ∈ (A,Ω),
(3) for all compact I ⊂ (A,Ω), there is some KI < ∞ such that for all

x ∈Mi, t ∈ I,
|Rm[gi](x, t)| ≤ KI .

After passing to a subsequence, Ricci flow solutions gi(t) converge smoothly
to a Ricci flow solution g∞(t) on a pointed étale Riemannian groupoid
(G∞, Ox∞), for t ∈ (A,Ω).

Given a Ricci flow solution (M, g(t)) that exists for t ∈ (0,∞), a common
technique in considering the long-time behavior is to consider the blow down
limit. That is, define gs(t) = g(st)/s, and let s→∞.

Corollary 8.6. If (M,p, g(t)) is a Type-III Ricci flow solution, then for
any si → ∞, there is a subsequence, also called si, and a pointed étale
Riemannian groupoid (G∞, Ox∞ , g∞(t)), t ∈ (0,∞) such that

lim
i→∞

(M,p, gsi(t)) = (G∞, Ox∞ , g∞(t)).

This corollary is used to give a nice description of the Ricci flow on three-
dimensional locally homogeneous geometries. The symbol “∼=” here refers
to weak equivalence of groupoids, which are all either trivial groupoids or
action groupoids.

Theorem 8.7 ([Lot07b]). Let (M3, p, g(t)) be a finite-volume pointed locally
homogeneous Ricci-flow solution that exists for all t ∈ (0,∞). Then

lim
s→∞

(M3, p, gs(t))

exists, and it is an expanding soliton on a pointed three-dimensional étale
groupoid G∞. Let Γ = π1(M,p), and let ΓR = α−1(α(Γ)) for homomor-
phisms α to be defined. Then the groupoid G∞ and the metric g∞(t) are
given as follows.

(1) If (M, g(0)) has constant negative curvature, then

G∞ ∼= H3 o Γ ∼=M,

and g∞ has constant sectional curvature −1/4t.
(2) If (M, g(0)) has R3-geometry, there is a homomorphism

α : Isom(R3) −→ Isom(R3)/R3 ∼= O(3),

where R3 is the subgroup of translations. Then

G∞ ∼= R3 o ΓR,

and g∞ is the constant flat metric.
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(3) If (M, g(0)) has Sol-geometry, there is a homomorphism

α : Isom(Sol) −→ Isom(Sol)/R2,

where R2 ⊂ Sol ⊂ Isom(Sol) are normal subgroups. Then

G∞ ∼= SoloΓR,

and g∞ = dx2+4tdy2+dz2, for the appropriate choice of coordinates
x, y, z.

(4) If (M, g(0)) has Nil-geometry, there is a homomorphism

α : Isom(Nil) −→ Isom(Nil)/Nil,

where Nil ⊂ Isom(Nil) acts by left multiplication. Then

G∞ ∼= NiloΓR,

and g∞ = dx2/3t1/3 + t1/3(dy2 + dz2), for the appropriate choice of
coordinates x, y, z.

(5) If (M, g(0)) has (R×H2)-geometry, there is a homomorphism

α : Isom(R×H2) −→ Isom(R×H2)/R ∼= Z× Isom(H2).

Then

G∞ ∼= (R×H2)o ΓR,

and g∞ = gR+ gH2(t), where gh2(t) has constant sectional curvature
−1/2t.

(6) If (M, g(0)) has S̃L2R-geometry, there is a homomorphism

α : Isom
(
S̃L2R

)
−→ Isom

(
S̃L2R

)
/R ∼= Isom(H2).

Then

G∞ ∼= (R×H2)× (Ro α(Γ)),

where α(Γ) ⊂ Isom(H2) acts linearly on R via the orientation ho-
momorphism α(Γ)→ Z/2, and g∞ = gR + gH2(t), where gh2(t) has
constant sectional curvature −1/2t.

The compactness theorem is also a major ingredient in Lott’s subsequent
progress in analyzing Ricci flow on three-dimensional manifolds.

Theorem 8.8 ([Lot07a]). If (M3, g(t)) is a Ricci flow solution, with sec-

tional curvatures that are O(t−1) and diameter that is O(t1/2), then the pull-

back solution (M̃3, g̃(t)) on the universal cover approaches a homogeneous
expanding soliton.
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entre propriétés locales et globales, C. R. Acad. Sci. Paris Sér. A-B 263 (1966),
A907–A910. MR MR0214103 (35 #4954)


