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1 Introduction

In many branches of mathematics, classification theorems are much sought-after results.
There are numerous examples, from the structure of finitely generated modules over a PID,
to the Artin-Wedderburn theorem on semisimple rings, to the classification of compact 2-
manifolds, to Thurston’s Geometrization program. In Riemannian geometry, such results
often relate topology and curvature. For example,

Theorem 1 (Hamilton, 1982). If (M3, g0) is a closed Riemannian manifold with positive
Ricci curvature, then there exists a unique solution g(t), t ∈ [0,∞), to the initial value
problem for the normalized1 Ricci flow

∂

∂t
g = −2 Ric +

2

n

∫
M

scal dµ∫
M

dµ
g

g(0) = g0

such that g(t) converges as t → ∞ to a metric g∞ of constant positive sectional curvature.

This was the first major result to utilize the Ricci flow, and Hamilton extended it to
dimension 4 in 1986, with Ric > 0 replaced by Rm > 0. H. Chen proved a slightly more
general version shortly thereafter. Hamilton, Yau, Rauch, and others conjectured that the
result was in fact true for all n ≥ 32. In 2006, a more general statement was verified:

Theorem 2 (Böhm & Wilking, 2006). If (Mn, g0) is a closed Riemannian manifold with
2-positive curvature operator, then there exists a unique solution g(t), t ∈ [0,∞), to the
initial value problem for the normalized Ricci flow such that g(t) converges as t → ∞ to a
metric of constant positive sectional curvature.

What is the topological connection? A manifold with constant sectional curvature is
called a space form, and the topology of such spaces has been classified by Wolf. For example,

1The unnormalized flow is given by the equation ∂g/∂t = −2Ric.
2In dimension 2, there is a unique solution to Ricci Flow ∂g/∂t = (r − scal)g, where r =

∫
scal dµ/

∫
dµ

is the average scalar curvature. The solution exists for all time, and converges to a metric of constant
curvature. This case is special, because of the Gauss-Bonnet theorem:

∫
sect dµ = 2πχ(M). Since scal(x) =

2 sect(TxM) = 2〈R(e1, e2)e2, e1〉, this implies that r is determined by χ(M), and is independent of g.
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if n is even, the only (spherical) space forms are S2n and RP2n. This means that the universal
cover of M in the theorem is S2n. There are many more possibilities for space forms in odd
dimension.

The proof of Böhm and Wilking introduces new algebraic techniques for studying the
Ricci Flow, which we will now discuss.

2 Curvature

Let us fix some notation. Given a Riemannian manifold (Mn, g) with Levi-Civita connection
∇, the Riemannian curvature tensor is given by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

This is a (3, 1)-tensor, but we can raise an index with the metric to get a (4, 0)-tensor:

R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉.

It is more useful for us to think of this as the Riemannian curvature operator

Rm: ∧2 TM × ∧2TM −→ R
(X ∧ Y, Z ∧ W ) 7−→ 2〈R(X,Y )W,Z〉

The factor of 2 and the sign of this operator vary from author to author. There are also the
other standard derived curvatures3. This operator is symmetric and bilinear, so pointwise,
we have

Rmx ∈ (∧2T ∗
xM) ⊗S (∧2T ∗

xM) = S2(∧2T ∗
xM).

3Recall that the sectional curvature of the 2-plane spanned by X,Y ∈ TxM is

sect(X,Y ) =
〈R(Y,X)X,Y 〉

|X|2|Y |2 − 〈X,Y 〉2
,

the Ricci curvature is Ric(Y,Z) = tr(X −→ R(X,Y )Z) =
n∑

i=1

〈R(ei, Y )Z, ei〉. If Y = e1 is a unit vector,

completed to form an orthonormal basis, Ric(Y, Y ) =
n∑

i=2

sect(Y, ei). This can also be thought of as an

endomorphism TM → TM by setting Ric(Y ) =
n∑

i=1

R(Y, ei)ei. The scalar curvature is scal : M → R given

by scal = tr(Ric) =
n∑

i=1

〈Ric(ei), ei〉 =
∑
i<j

sect(ei, ej).

In dimension 3, Riemann and Ricci are equivalent, since we have the relation1 0 1
1 1 0
0 1 1

sect(e1, e2)
sect(e2, e3)
sect(e1, e3)

 =

Ric(e1, e1)
Ric(e2, e2)
Ric(e3, e3)

 .

This means the sectional curvature can be computed from Ric, since the matrix has determinant 2, and the
sectional curvatures determine Riemann.
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However, if {ei}n
i=1 is an orthonormal basis of TxM , then {ei∧ej}i<j is an orthonormal basis

for ∧2TxM , and so we can think of Rmx as a symmetric
(

n
2

)
×

(
n
2

)
matrix. Note that we can

also write Rm as a self-adjoint operator, using the metric:

Rm: ∧2 TM −→ ∧2TM

Let {λi}N
i=1 be the eigenvalues of Rm. We say that Rm is 2-positive4 if λi +λj > 0 for all

i 6= j. This allows the smallest eigenvalue to be “slightly negative.” We write this condition

as Rm
2
> 0.

3 Main Constructions

3.1 Evolution of Riemannian Curvature

Since we have information about the Riemannian curvature operator, we would like to know
how it evolves under the Ricci Flow. Using Uhlenbeck’s trick5 we can greatly simplify what

4This generalizes the notion of a positive operator. We note that positive Riemann is equivalent to
positive Ricci in dimension 3. If λ > µ > ν are the eigenvalues of Rm with respect so some orthonormal
bases {e1, e2, e3} of TxM and {θ1 = (e1∧e2)/

√
2, θ2 = (e3∧e1)/

√
2, θ1 = (e2∧e3)/

√
2}, then these eigenvalues

are twice the sectional curvatures. Here identify Rmx with a matrix M such that

〈R(ei, ej)ek, el〉 = Mpqθ
p
ijθ

q
lk.

Therefore, one can show Rm
2
> 0 if and only if Ric > 0 by writing

Rm =

λ
µ

ν

 , Ric =
1
2

µ + ν
λ + ν

λ + µ

 .

5Let us recall Uhlenbeck’s trick. Let (V, h0)
π→ (M, g(t)) be a vector bundle that is isomorphic to TM

with a bundle isomorphism ι0, and where h0 = ι∗0(g0). Then

ι0 : (V, h0) −→ (TM, g0)

is a bundle isometry. One checks that h0 remains an isometry as t varies. We can pull back the connections:

D(t) = ι(t)∗∇(t)

and extend to tensor product and dual bundles. Similarly, we can pull back the Riemann curvature tensor:
ι∗ Rm ∈ C∞(∧2V ⊗S ∧2V ). The bundle Laplacian is

∆D = trg(∇D ◦ ∇D) = gij(∇D)i(∇D)j ,

where (∇D)i(ξ) = ∇j(ι(ξ)). We can then rewrite ∂R/∂t as

∂

∂t
Rabcd = ∆DRabcd + 2(Babcd − Babdc + Bacbd − Badbc),

where Babcd = heghfhRaebfRcgdh.
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would otherwise be an unwieldy expression:

∂

∂t
Rm = ∆ Rm + Rm2 + Rm# .

The first term is the bundle Laplacian from the trick. The second term is merely composition,
thinking of Rm as a self-adjoint operator:

Rm2 = Rm ◦Rm: ∧2 TM −→ ∧2TM.

The third term requires a construction using Lie algebras.
In general, if g is a Lie algebra with bracket [·, ·] and basis {ϕi}, let {ϕi} be the dual

basis of g∗. Suppose
A,B : g × g −→ R

are symmetric bilinear maps, so A,B ∈ g∗ ⊗S g∗ = S2(g∗). Define the sharp product of
operators

#: S2(g∗) × S2(g∗) −→ S2(g∗)

where

(A#B)ij = (A#B)(ϕi, ϕj) =
1

2
Ckl

i Cmn
j AkmBln.

In this expression, the Cij
k factors are the dual structure constants, defined by

[ϕi, ϕj] = Cij
k ϕk.

Now, in our situation, we have g∗ = ∧2T ∗
xM , and Rm# = Rm # Rm. This means

∂

∂t
Rm = ∆ Rm + Rm2 + Rm#

is a (more-or-less parabolic) pde in the bundle S2 ∧2 T ∗M over M , and Rm is a section of
this bundle.

Some of the most powerful tools for analyzing pde are “maximum principles,” which
come in various types6. The one of interest in our present situation is

6We should also mention the scalar maximum principle, which says that if M is closed and
u : M × [0, T ) → R is C2 and satisfies

∂

∂t
u ≥ ∆g(t)u + Q(u),

for a locally Lipschitz function Q : R → R, such that u(x, 0) ≥ c for some c ∈ R and for all x ∈ M , and if U
is the solution of

dU

dt
= Q(U), U(0) = c,

then u(x, t) ≥ U(t) for all x ∈ M , as long as either exists.
This is used, for example, to show that if a manifold has positive scalar curvature, then Ricci Flow will

develop a singularity in finite time: we have ∂ scal /∂t = ∆scal+2|Ric |2 ≥ ∆scal+ 2
n scal2. The related

ode is dR/dt = n
2 R2, whose solution blows up in finite time. The maximum principle says scal ≥ R, so it

blows up as well.
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Theorem 3 (Tensor Maximum Principle). Let (Mn, g(t)) be closed, let V
π→ M be a vector

bundle with metric h, F ⊂ V a closed, fiberwise convex set that is invariant under parallel
translation7 (with repect to time-dependent metric connections in V ). Let

Q : V × [0, T ) −→ V

be a continous time-dependent vertical vector field that is locally Lipschitz in V , let

U : M × [0, T ) −→ V

be a time-dependent section. Suppose that F has the property that every solution U of the
ode in each fiber

d

dt
U = Qx(U), U(x, 0) ∈ Fx,

remains in Fx as long as it exists.
Then any solution

u(x, t) : M × [0, T ) −→ V

to the pde
∂

∂t
u = ∆u + Q(u) u(x, 0) ∈ Fx,

remains in F as long as it exists.

Essentially, this tells us that pointwise, the diffusion term ∆u will keep the solution in
the set F as long as the reaction term Q(u) is sufficiently well-behaved in each fiber. “What
starts in Vegas stays in Vegas.” See figure 3.1.

Thus, in order to analyze the behavior of Rm, it is enough to analyze the ode

d

dt
R = R2 + R#

in the bundle V = S2 ∧2 T ∗M .

3.2 Invariant Subsets

Now, the goal is to find the subset F ⊂ S2∧2T ∗M that properly encodes the desired curvature
properties, and where the ode behaves properly. To do this, we consider abstract versions
of Rm, and think of the ode acting on the space of these objects.

First, we recall a useful fact. We have a vector space isomorphism

∧2(Rn)∗ ∼= so(n)

e∗i ∧ e∗j ↔ Eij

7To say that F is invariant under parallel translation is to say that for every path γ : [0, b] → M and
vector v ∈ Fγ(0), the unique parallel section v(σ) ∈ Vγ(s), for s ∈ [0, b], along γ(s) with v(0) = v, is contained
in F.

For example, if V = M × V , then this says that each Vx = [a, b] is independent of x ∈ M .
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Figure 1: Tensor Maximum Principle

where Eij is the n×n matrix with 0 in each entry, except 1 in the (i, j) entry and −1 in the
(j, i) entry. This means ∧2(Rn)∗ inherits8 the Lie algebra structure of so(n). Thus

∧2(T ∗
xMn) ∼= ∧2(Rn)∗ ∼= so(n)

as Lie algebras. Now we define the space of algebraic curvature operators (acos) as

S2
B(so(n)) ⊂ S2(so(n)) = so(n) ⊗S so(n),

which is the subspace of symmetric, bilinear forms (or equivalently, self-adjoint endomor-
phisms) satisfying the first Bianchi identity9:

R(x, y, z, w) + R(y, z, x, w) + R(z, x, y, w) = 0.

An aco R ∈ S2
B(so(n)) has the expected derived curvatures10.

Note that we are essentially modeling Rm pointwise, since

Rmx ∈ S2
B(∧2(T ∗

xMn)) ∼= S2
B(so(n)).

8Namely, [φ, ψ]ij = φikψkj − ψikφkj .
9As a quick illustration of the Bianchi identity in dimension 4, we have so(4) ∼= so(3) × so(3), so we can

write an element as a block matrix: (
A B
BT C

)
,

Then the Bianchi identity says that trA = trC.
10If R ∈ S2

B(∧2Rn),

〈Ric(R)(ei), ej〉 =
n∑

k=1

〈R(ei ∧ ek), ej ∧ ek〉 = Rikjk,

scal(R) = tr(Ric(R)) = Rikik.
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∂C = {λ1 + λ2 = 0}

S2
B(so(n))

R+I

C

Figure 2: The cone C

The subset C = {R ∈ S2
B(so(n)) | R

2

≥ 0} is called the cone of 2-nonnegative acos. We
can think of

Q : S2
B(so(n)) −→ S2

B(so(n))

R 7−→ R2 + R#

as a vector field, and we want to find sets related to C that are preserved by Q in order to
use the Tensor Maximum Principle. The idea is to “pinch” the cone down to the ray R+I,
which represents metrics of constant positive sectional curvature11

The idea is to start with known invariant sets and transform them with special linear
maps. This would ordinarily be a difficult task, but we can appeal to representation theory
to make things simpler.

Recall that there is a standard orthogonal decomposition of Rm as

Rm = U + V + W,

where W is the Weyl tensor 12. This is usually an obstacle, and Ric only depends on U and
V . Therefore we would like to find ways to ignore its analog in the abstract algebraic setting.

There is a natural representation

O(n) ↪−→ GL(n, R)

11If Rmx ∈ R+I, then sect(X,Y ) =
〈Rm(X ∧ Y ), X ∧ Y 〉
|X|2|Y |2 − 〈X,Y 〉2

=
c〈X ∧ Y,X ∧ Y 〉
〈X ∧ Y,X ∧ Y 〉

= c > 0, where we used the

induced inner product on ∧2TxM , which is 〈X ∧ Y, V ∧ W 〉 = det
(
〈X,V 〉 〈X,W 〉
〈Y, V 〉 〈Y,W 〉

)
.

12More explicitly,

Rm =
R

2n(n − 1)
g ? g +

1
n − 2

Ric0 ?g + W,

where Ric0 is the trace-free part of Ricci, and the Kulkarni-Nomizu operator ? is defined as

(P ? Q)ijkl = PilQjk + PjkQil − PikQjl − PjlQik.
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which leads to

Theorem 4. We can write

S2
B(so(n)) = 〈I〉 ⊕ 〈Ric0〉 ⊕ 〈W 〉,

and this is an O(n)-invariant irreducible orthogonal decomposition13.

The middle summand refers to the trace-free ricci part of an aco. This means we can
write

R = RI + R0 + RW ,

where R0 = RRic0 .
In the hopes of getting around 〈W 〉, we consider O(n)-equivariant transformations of C.

It turns out that all O(n)-equivariant linear transformations of S2
B(so(n)) preserving Weyl

can be described as

`a,b : S2
B(so(n)) −→ S2

B(so(n))

R 7−→ (1 + 2(n − 1)a)RI + (1 + (n − 2)b)R0 + RW

for a, b ∈ R. These are invertible whenever a 6= −1/2(n − 1) and b 6= −1/(n − 2), they
preserve Weyl, and they are a multiple of the identity on the other two parts. From this,
define

Da,b : S2
B(so(n)) −→ S2

B(so(n))

R 7−→ (`−1
a,b ◦ Q ◦ `a,b)(R) − Q(R)

So D measures the change in the vector field Q under conjugation by `a,b.
This is natural to consider, since checking if a set `a,b(C) is preserved amounts to checking

if D(R) + Q(R) is in ∂(C). It turns out that D has extremely nice properties14:

13More specifically, we have the Bianchi map b : ⊗4 Rn → ⊗4Rn given by

b(R)(x, y, z, w) =
1
3
(R(x, y, z, w) + R(y, z, x, w) + R(z, x, y, w).

Then b preserves S2(∧2Rn), and S2
B(so(n)) = ker(b|S2(so(n))). There is a natural inclusion

id∧ : S2(Rn) ↪→ S2
B(so(n)), where in general the “wedge” of two symmetric maps is

(A ∧ B)(v ∧ w) =
1
2
(Av ∧ Bw + Bv ∧ Aw).

The map id∧, where id∧(A) = id∧A, is the adjoint of Ric : S2
B(∧2Rn) → S2(Rn). Now, in the decomposition,

we have
〈I〉 = R id∧ id, 〈Ric0〉 = im(id∧), 〈W 〉 = ker(Ric).

14These properties follow from the remarkable formula for D itself:

Da,b(R) = α Ric0 ∧Ric0 +β Ric∧Ric +γ Ric2
0 ∧ id +δI,
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• D(R) is independent of the Weyl part

• D(R) is diagonalizable

• D(R) has eigenvalues that are easily computable

We can use these properties to prove that, for special values15 of a and b, the cones C

and `a,b(C) are preserved16 by the ode, and moreover, Q(R) t ∂`a,b(C) whenever R 6= 017.
Next, using these facts, we construct continuous pinching families18 {C(s)}s∈[0,1) of the

invariant sets derived from various transformed cones. The transversality of Q means that
the family is “pinched” down from C(0) = C to the ray R+I as s → 1. This was the major
breakthrough of the authors, since it had been previously difficult to successfully use the
Tensor Maximum Principle in higher dimensions.

From such a family, we construct a “generalized pinching set19” F ⊂ S2
B(so(n)). In n = 3,

where

α = (n − 2)b2 − 2(a − b), β = 2a, γ = 2b2, δ =
tr(Ric2

0)
n + 2n(n − 1)a

(
nb2(1 − 2b) − 2(a − b)(1 − 2b + nb2)

)
.

The proof amounts to showing it is independent of Weyl, and then showing that both sides of the equation
have the same projection to 〈W 〉 and the same Ric.

15We need to assume 2a = 2b + (n − 2)b2.
16We have `a,b(C) preserved by the ode iff C is prserved by dR/dt = Q(R) + D(R), so we need to show

that D(R) is inside C. This fact uses the great properties of D.
17This is true iff Q(R) + D(R) t ∂C, so we need to show that D is positive. This fact uses the great

properties of D.
18Formally, a continuous family C(S) ⊂ S2

B(so(n)) of top-dimensional closed convex cones is a pinching
family for the ode dR/dt = Q(R) if

• C(s) is O(n)-invariant for all s ∈ [0, 1)

• scal(R) > 0 for R ∈ C(s) \ {0}

• Q(R) t ∂C(s) and lies inside C(s) for s ∈ [0, 1) and R 6= 0

• lim
s→1

C(s) = R+I

An example of a pinching family in dimension 3 is

C(s) = {R | µ1 + µ2 ≥ 0, µ3 − µ1 ≤ (1 − s)(µ1 + µ2 + µ3)}.

19Formally, suppose we are given a pinching family {C(s)}s∈[0,1) as above, such that C(s) \ {0} is in
the half-space of aco with scal > 0 for all s. For any ε ∈ (0, 1), h ∈ (0,∞), there is a closed, convex,
O(n)-invariant subset F ⊂ S2

B(so(n)) such that

• F is preserved by the ode

• C(ε) ∩ {R : tr(R) ≤ h0} ⊂ F ⊂ C(ε)

• F \ C(s) is compact for all s ∈ [ε, 1).
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R+I

C(0) = C

C(s)

C(ε)

R+I

C(s)

F

S2
B(so(n))S2

B(so(n))

Figure 3: The family C(s) and the set F

Hamilton used a “pinching set” to handle the estimate

|R̃m| ≤ K|Rm |1−δ

where

R̃m = Rm− 1

N
tr(Rm)I.

The appropriate higher-dimensional analog turns out to be F , with F = Fx. An important
fact about F is that the asymptotic cone is R+I.

4 Completing the Proof

Once the existence of a generalized pinching set is established, there are serveral ways to
complete the proof. The main point, however, is that the Tensor Maximum Principle implies
that Ricci flow evolves g0 to metrics g(t) with curvature operators Rm(g(t), x) ∈ F for all x.
Since g0 has positive scalar curvature20, there must be a singularity in finite time, by another
Maximum Principle. Say, a solution exists on a maximal time interval 0 ≤ t < T < ∞.

From here, it is a matter of rescaling the metrics in some way to guarantee at least
subsequential convergence to the desired metric. This can be done easily with the help of
several deep theorems in the field. Here is one method21. Rescale space and time to generate

20

Rm > 0 =⇒ 〈Rm(X ∧ Y ), X ∧ Y 〉 > 0 =⇒ sect(X,Y ) > 0, and scal =
∑
i<j

sect(ei, ej) > 0.

21We outline two other methods.
In the first method, we select a sequence {(xi, ti)} such that ti → T , and set

Ki = max
x∈M,0≤t≤ti

|Rm(x, t)|,

so Ki → ∞. Now rescale the metrics:
g(t) = Kig(ti + K−1

i t)

so to ensure that the curvature is bounded. Now apply Pereleman’s No Local Collapsing and Hamilton’s
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metrics g(t) that give M constant volume. Then the normalized Ricci Flow exists for all
time. Properties of F imply that the curvature operator of g(t) will be contained in a cone
sufficiently close to R+I. One then applies a theorem of Huisken to get C∞ convergence to
a limit metric of constant positive sectional curvature.

5 Outlook

The technique of constructing and manipulating cones that was introduced in this paper was
used in proving another classification theorem –the differentiable sphere theorem.

Theorem 5 (Brendle & Schoen, 2007). If Mn is compact, n ≥ 4, and M has positive
quarter-pinched sectional curvature (i,e., with values in (1, 4]), then M admits a metric of
constant sectional curvature and is diffeomorphic to a spherical space form.

In particular, if M is simply connected, then M ∼= Sn. It should be noted that the
concepts of quarter-pinched sectional curvature and 2-positive curvature operator are not
equivalent; in fact neither implies the other.

More generally, algebraic techniques are becoming increasingly important in studying
problems involving Ricci Flow. After all, most of mathematics is devoted to avoiding difficult
problems in analysis.(!)

Compactness theorems to obtain a subsequence converging to a limit (M∞, g∞, x∞), with Rm∞ ∈ R+I in
a neighborhood of x∞. Extend this to the whole manifold, and then use Schur’s Lemma to conclude that
the sectional curvature is globally constant. If we want exponential convergence, we can apply Huisken’s
theorem.

For the other method, rescale the metrics to g(t) such that

max
x∈M

sect(g(t)) = 1.

That is, g(t) = λtg(t), for some λt. Using derivative estimates of Shi, and pulling the metrics back to
Euclidean space, we get a convergent subsequence: g(tj) → g∞, and using the properties of F , we have

g∞ ∈
∩ 1

λ2
j

F = R+I

at each point. Apply Schur’s Lemma to get globally constant sectional curvature. Now apply a result of
Klingenberg to guarantee no collapsing.
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